Observational and modeling studies have shown that intraseasonal, 40-day oscillations over the Northern Hemisphere extratropics are strongest around the winter season. To explore intraseasonal variability in the presence of the annual cycle, an eigenanalysis method based on Floquet theory is used. This approach helps us determine the stability of the large-scale, midlatitude atmospheric flow's periodic basic state. It gives information about the growth rate of the unstable, intraseasonal eigenmode and confirms the atmosphere's preference for intraseasonal activity during the winter months, as the annual cycle modulates the eigenvector field. This eigenmode solution, furthermore, provides a basis for making extended-range (40-day) streamfunction-anomaly forecasts on a set of intraseasonal oscillations whose amplitude and phase depend on the season. A simple autoregressive model is developed to shed light on the seasonal dependence of predictive skill for the intraseasonal signal.
Climate - the "coarse-gridded" state of the coupled ocean - atmosphere system - varies on many time and space scales. The challenge is to relate such variation to specific mechanisms and to produce verifiable quantitative explanations. In this paper, we study the oceanic component of the climate system and, in particular, the different circulation regimes of the mid-latitude win driven ocean on the interannual time scale. These circulations are dominated by two counterrotating, basis scale gyres: subtropical and subpolar. Numerical techniques of bifurcation theory are used to stud the multiplicity and stability of the steady-state solution of a wind-driven, double-gyre, reduced-gravity, shallow water model. Branches of stationary solutions and their linear stability are calculated systematically as parameter are varied. This is one of the first geophysical studies i which such techniques are applied to a dynamical system with tens of thousands of degrees of freedom. Multiple stationary solutions obtain as a result of nonlinear interactions between the two main recirculating cell (cyclonic and anticyclonic) of the large- scale double-gyre flow. These equilibria appear for realistic values of the forcing and dissipation parameters. They undergo Hop bifurcation and transition to aperiodic solutions eventually occurs. The periodic and chaotic behaviour is probably related to an increased number of vorticity cells interaction with each other. A preliminary comparison with observations of the Gulf Stream and Kuroshio Extensions suggests that the intern variability of our simulated mid-latitude ocean is a important factor in the observed interannual variability o these two current systems.
A reduced-gravity shallow-water (SW) model is used to study the nonlinear behavior of western boundary currents (WBCs), with particular emphasis on multiple equilibria and low-frequency variations. When the meridionally symmetric wind stress is sufficiently strong, two steady solutions–nearly antisymmetric about the x axis–are achieved from different initial states. These results imply that 1) the inertial WBCs could overshoot either southward or northward along the western boundary, depending on their initial states; and thus, 2) the WBC separation and eastward jet could occur either north or south of the maximum wind stress line. The two equilibria arise via a perturbed pitchfork bifurcation, as the wind stress increases. A low-order, double-gyre, quasigeostrophic (QG) model is studied analytically to provide further insight into the physical nature of this bifurcation. In this model, the basic state is exactly antisymmetric when the wind stress is symmetric. The perturbations destroying the symmetry of the pitchfork bifurcation can arise, therefore. in the QG model only from the asymmetric components of the wind stress. In the SW model, the antisymmetry of the system's basic response to the symmetric forcing is destroyed already at arbitrarily low wind stress. The pitchfork bifurcation from this basic state to more complex states at high wind stress is accordingly perturbed in the absence of any forcing asymmetry. Periodic solutions arise by Hopf bifurcation from either steady-state branch of the SW model. A purely periodic solution is studied in detail. The subtropical and subpolar recirculations, separation, and eastward jet exhibit a perfectly periodic oscillation with a period of about 2.8 years. Outside the recirculation zones, the solutions are nearly steady. The alternating anomalies of the upper-layer thickness are periodically generated adjacent to the ridge of the first and strongest downstream meander and are then propagated and advected into the two WBC zones, by Rossby waves and the recirculating currents, respectively. These anomalies periodically change the pressure gradient field near the WBCs and maintain the periodic oscillation. Aperiodic solutions are also studied by either increasing wind forcing or decreasing the viscosity.