We revisit a recent claim that the Earth's climate system is characterized by sensitive dependence to parameters; in particular, that the system exhibits an asymmetric, large-amplitude response to normally distributed feedback forcing. Such a response would imply irreducible uncertainty in climate change predictions and thus have notable implications for climate science and climate-related policy making. We show that equilibrium climate sensitivity in all generality does not support such an intrinsic indeterminacy; the latter appears only in essentially linear systems. The main flaw in the analysis that led to this claim is inappropriate linearization of an intrinsically nonlinear model; there is no room for physical interpretations or policy conclusions based on this mathematical error. Sensitive dependence nonetheless does exist in the climate system, as well as in climate models – albeit in a very different sense from the one claimed in the linear work under scrutiny – and we illustrate it using a classical energy balance model (EBM) with nonlinear feedbacks. EBMs exhibit two saddle-node bifurcations, more recently called "tipping points," which give rise to three distinct steady-state climates, two of which are stable. Such bistable behavior is, furthermore, supported by results from more realistic, nonequilibrium climate models. In a truly nonlinear setting, indeterminacy in the size of the response is observed only in the vicinity of tipping points. We show, in fact, that small disturbances cannot result in a large-amplitude response, unless the system is at or near such a point. We discuss briefly how the distance to the bifurcation may be related to the strength of Earth's ice-albedo feedback.
PDFObservational data sets in space physics often contain instrumental and sampling errors, as well as large gaps. This is both an obstacle and an incentive for research, since continuous data sets are typically needed for model formulation and validation. For example, the latest global empirical models of Earth's magnetic field are crucial for many space weather applications, and require time continuous solar wind and interplanetary magnetic field (IMF) data; both of these data sets have large gaps before 1994. Singular spectrum analysis (SSA) reconstructs missing data by using an iteratively inferred, smooth “signal” that captures coherent modes, while “noise” is discarded. In this study, we apply SSA to fill in large gaps in solar wind and IMF data, by combining it with geomagnetic indices that are time continuous, and generalizing it to multivariate geophysical data consisting of gappy “driver” and continuous “response” records. The reconstruction error estimates provide information on the physics of co variability between particular solar wind parameters and geomagnetic indices.
PDFOscillatory climatic modes over the North Atlantic, Ethiopian Plateau, and eastern Mediterranean were examined in instrumental and proxy records from these regions. Aside from the well-known North Atlantic Oscillation (NAO) index and the Nile River water-level records, the authors study for the first time an instrumental rainfall record from Jerusalem and a tree-ring record from the Golan Heights. The teleconnections between the regions were studied in terms of synchronization of chaotic oscillators. Standard methods for studying synchronization among such oscillators are modified by combining them with advanced spectral methods, including singular spectrum analysis. The resulting cross-spectral analysis quantifies the strength of the coupling together with the degree of synchronization. A prominent oscillatory mode with a 7–8-yr period is present in all the climatic indices studied here and is completely synchronized with the North Atlantic Oscillation. An energy analysis of the synchronization raises the possibility that this mode originates in the North Atlantic. Evidence is discussed for this mode being induced by the 7–8-yr oscillation in the position of the Gulf Stream front. A mechanism for the teleconnections between the North Atlantic, Ethiopian Plateau, and eastern Mediterranean is proposed, and implications for interannual-to-decadal climate prediction are discussed.
PDFLow-frequency variability (LFV) of the atmosphere refers to its behavior on time scales of 10–100 days, longer than the life cycle of a mid-latitude cyclone but shorter than a season. This behavior is still poorly understood and hard to predict. The present study compares various model reduction strategies that help in deriving simplified models of LFV. Three distinct strategies are applied here to reduce a fairly realistic, high-dimensional, quasi-geostrophic, 3-level (QG3) atmospheric model to lower dimensions: (i) an empirical–dynamical method, which retains only a few components in the projection of the full QG3 model equations onto a specified basis, and finds the linear deterministic and the stochastic corrections empirically as in Selten (1995) [5]; (ii) a purely dynamics-based technique, employing the stochastic mode reduction strategy of Majda et al. (2001) [62]; and (iii) a purely empirical, multi-level regression procedure, which specifies the functional form of the reduced model and finds the model coefficients by multiple polynomial regression as in Kravtsov et al. (2005) [3]. The empirical–dynamical and dynamical reduced models were further improved by sequential parameter estimation and benchmarked against multi-level regression models; the extended Kalman filter was used for the parameter estimation. Overall, the reduced models perform better when more statistical information is used in the model construction. Thus, the purely empirical stochastic models with quadratic nonlinearity and additive noise reproduce very well the linear properties of the full QG3 model’s LFV, i.e. its autocorrelations and spectra, as well as the nonlinear properties, i.e. the persistent flow regimes that induce non-Gaussian features in the model’s probability density function. The empirical–dynamical models capture the basic statistical properties of the full model’s LFV, such as the variance and integral correlation time scales of the leading LFV modes, as well as some of the regime behavior features, but fail to reproduce the detailed structure of autocorrelations and distort the statistics of the regimes. Dynamical models that use data assimilation corrections do capture the linear statistics to a degree comparable with that of empirical–dynamical models, but do much less well on the full QG3 model’s nonlinear dynamics. These results are discussed in terms of their implications for a better understanding and prediction of LFV.
PDF