The recent development of dense and continuously operating Global Navigation Satellite System (GNSS) networks worldwide has led to a significant increase in geodetic data sets that sometimes capture transient-deformation signals. It is challenging, however, to extract such transients of geophysical origin from the background noise inherent to GNSS time series and, even more so, to separate them from other signals, such as seasonal redistributions of geophysical fluid mass loads. In addition, because of the very large number of continuously recording GNSS stations now available, it has become impossible to systematically inspect each time series and visually compare them at all neighboring sites. Here we show that Multichannel Singular Spectrum Analysis (M-SSA), a method derived from the analysis of dynamical systems, can be used to extract transient deformations, seasonal oscillations, and background noise present in GNSS time series. M-SSA is a multivariate, nonparametric, statistical method that simultaneously exploits the spatial and temporal correlations of geophysical fields. The method allows for the extraction of common modes of variability, such as trends with nonconstant slopes and oscillations shared across time series, without a priori hypotheses about their spatiotemporal structure or their noise characteristics. We illustrate this method using synthetic examples and show applications to actual GPS data from Alaska to detect seasonal signals and microdeformation at the Akutan active volcano. The geophysically coherent spatiotemporal patterns of uplift and subsidence thus detected are compared to the results of an idealized model of such processes in the presence of a magma chamber source.
A low-order quasigeostrophic double-gyre ocean model is subjected to an aperiodic forcing that mimics time dependence dominated by interdecadal variability. This model is used as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The study relies on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), that is, of the time-dependent invariant sets attracting all trajectories initialized in the remote past. The existence of a global PBA is rigorously demonstrated for this weakly dissipative nonlinear model. Ensemble simulations are carried out and the convergence to PBAs is assessed by computing the probability density function (PDF) of localization of the trajectories. A sensitivity analysis with respect to forcing amplitude shows that the PBAs experience large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while less dramatic changes occur in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is then analyzed. Two types of basins of attraction coexist for certain parameter ranges; they contain chaotic and nonchaotic trajectories, respectively. The statistics of the former does not depend on the initial states whereas the trajectories in the latter converge to small portions of the global PBA. This complex scenario requires separate PDFs for chaotic and nonchaotic trajectories. General implications for climate predictability are finally discussed.