Economics

2019
Ghil, Michael. “Coupled Climate–Economics Modeling and Data Analysis: EnBCs and Fluctuation–Dissipation Theory.” CliMathParis 2019, Course IV: Coupled Climate–Ecology–Economy Modeling, Institut Henri Poincaré, Paris, France, 2019. CliMathParis 2019 Abstract

PDF
Groth, Andreas. “Impact of interannual climate variability on the agricultural sector in the Sahel region.” CliMathParis 2019, Workshop 3: Coupled climate-ecology-economy modeling and model hierarchies, Institut Henri Poincaré, Paris, France, 2019. Workshop website Abstract

PDF
2018
Sainte Fare Garnot, Vivien, Andreas Groth, and Michael Ghil. “Coupled Climate-Economic Modes in the Sahel's Interannual Variability.” Ecological Economics 153 (2018): 111–123. Abstract
We study the influence of interannual climate variability on the economy of several countries in the Sahel region. In the agricultural sector, we are able to identify coupled climate-economic modes that are statistically significant on interannual time scales. In particular, precipitation is a key climatic factor for agriculture in this semi-arid region. Locality and diversity characterize the Sahel's climatic and economic system, with the coupled climate-economic patterns exhibiting substantial differences from country to country. Large-scale atmospheric patterns — like the El Niño–Southern Oscillation and its quasi-biennial and quasi-quadrennial oscillatory modes — have quite limited influence on the economies, while more location-specific rainfall patterns play an important role.
PDF
2017
Duane, G. S., C. Grabow, F. Selten, and Michael Ghil, ed. Synchronization in Large Networks and Continuous Media – Data, Models, and Supermodels. Focus Issue in Chaos. 27th ed. American Institute of Physics, Melville, NY, 2017.
Groth, Andreas, and Michael Ghil. “Synchronization of world economic activity.” Chaos 27, no. 12 (2017): 127002. Abstract

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.

PDF
Groth, Andreas, and Michael Ghil. Synchronization of world economic activity. Paris: Chair Energy & Prosperity, 2017. Publisher's version Abstract

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era. These findings raise therefore questions about assessments of climate change impacts that are based purely on long-term economic growth models. A key conclusion is the importance of endogenous-dynamics e?ects at the interface between natural climate variability and economic fluctuations.

2016
Sella, Lisa, Gianna Vivaldo, Andreas Groth, and Michael Ghil. “Economic Cycles and Their Synchronization: A Comparison of Cyclic Modes in Three European Countries.” Journal of Business Cycle Research 12, no. 1 (2016): 25-48. Publisher's Version Abstract

The present work applies singular spectrum analysis (SSA) to the study of macroeconomic fluctuations in three European countries: Italy, The Netherlands, and the United Kingdom. This advanced spectral method provides valuable spatial and frequency information for multivariate data sets and goes far beyond the classical forms of time domain analysis. In particular, SSA enables us to identify dominant cycles that characterize the deterministic behavior of each time series separately, as well as their shared behavior. We demonstrate its usefulness by analyzing several fundamental indicators of the three countries' real aggregate economy in a univariate, as well as a multivariate setting. Since business cycles are international phenomena, which show common characteristics across countries, our aim is to uncover supranational behavior within the set of representative European economies selected herein. Finally, the analysis is extended to include several indicators from the U.S. economy, in order to examine its influence on the European economies under study and their interrelationships.

PDF
2015
Groth, Andreas. “Business cycle analysis and forecasting using advanced spectral methods and data-based low-order models.” 35th International Symposium on Forecasting Riverside, California, June 2015, 2015. Abstract

PDF
Chavez, M., Michael Ghil, and J. Urrutia-Fucugauchi, ed. Extreme Events: Observations, Modeling and Economics. Geophysical Monographs. Vol. 214. Washington, DC: American Geophysical Union & Wiley, 2015. Publisher's Version Abstract

The monograph covers the fundamentals and the consequences of extreme geophysical phenomena like asteroid impacts, climatic change, earthquakes, tsunamis, hurricanes, landslides, volcanic eruptions, flooding, and space weather. This monograph also addresses their associated, local and worldwide socio-economic impacts. The understanding and modeling of these phenomena is critical to the development of timely worldwide strategies for the prediction of natural and anthropogenic extreme events, in order to mitigate their adverse consequences. This monograph is unique in as much as it is dedicated to recent theoretical, numerical and empirical developments that aim to improve: (i) the understanding, modeling and prediction of extreme events in the geosciences, and, (ii) the quantitative evaluation of their economic consequences. The emphasis is on coupled, integrative assessment of the physical phenomena and their socio-economic impacts. With its overarching theme, Extreme Events: Observations, Modeling and Economics will be relevant to and become an important tool for researchers and practitioners in the fields of hazard and risk analysis in general, as well as to those with a special interest in climate change, atmospheric and oceanic sciences, seismo-tectonics, hydrology, and space weather.

Groth, Andreas, Patrice Dumas, Michael Ghil, and Stéphane Hallegatte. “Impacts of natural disasters on a dynamic economy.” In Extreme Events : Observations, Modeling, and Economics, edited by Eric Chavez, Michael Ghil, and Jaime Urrutia-Fucugauchi, 343–360. American Geophysical Union and Wiley-Blackwell, 2015. Abstract

This chapter presents a modeling framework for macroeconomic growth dynamics; it is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socioeconomic phe­ nomena. The challenge is to describe the interfaces between human activities and the functioning of the earth system. We examine the way in which this interface works in the presence of endogenous business cycle dynam­ ics, based on a nonequilibrium dynamic model. Recent findings about the macroeconomic response to natural disasters in such a nonequilibrium setting have shown a more severe response to natural disasters during expan­ sions than during recessions. These findings raise questions about the assessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical findings with observational data, we analyze cyclic behavior in the U.S. economy, based on multivariate singular spectrum analysis. We analyze a total of nine aggregate indicators in a 52 year interval (1954–2005) and demon­ strate that the behavior of the U.S. economy changes significantly between intervals of growth and recession, with higher volatility during expansions.

PDF
Groth, Andreas, Michael Ghil, Stéphane Hallegatte, and Patrice Dumas. “The Role of Oscillatory Modes in U.S. Business Cycles.” OECD Journal: Journal of Business Cycle Measurement and Analysis, no. 2015/1 (2015): 63–81. Abstract

We apply multivariate singular spectrum analysis to the study of U.S. business cycle dynamics. This method provides a robust way to identify and reconstruct oscillations, whether intermittent or modulated. We show such oscillations to be associated with comovements across the entire economy. The problem of spurious cycles generated by the use of detrending filters is addressed and we present a Monte Carlo test to extract significant oscillations. The behavior of the U.S. economy is shown to change significantly from one phase of the business cycle to another: the recession phase is dominated by a five-year mode, while the expansion phase exhibits more complex dynamics, with higher-frequency modes coming into play. We show that the variations so identified cannot be generated by random shocks alone, as assumed in ‘real’ business-cycle models, and that endogenous, deterministically generated variability has to be involved.

PDF
2014
Groth, Andreas. “Oscillatory behavior and oscillatory modes.” SSA workshop Bournemouth, September 2014, 2014. Abstract

PDF
2013
Ghil, Michael. “Lecture 3 : The Coupled Dynamics of Climate and Economics.” Workshop on Mathematics of Climate Change, Related Hazards and Risks, CIMAT, Guanajuato, Mexico, 2013. Abstract

Lecture 3 : The Coupled Dynamics of Climate and Economics
Sella, Lisa, Gianna Vivaldo, Andreas Groth, and Michael Ghil. “Economic Cycles and their Synchronization: A spectral survey.” Fondazione Eni Enrico Mattei (FEEM) 105, no. 105 (2013): 1. Publisher's Version Abstract

The present work applies several advanced spectral methods to the analysis of macroeconomic fluctuations in three countries of the European Union: Italy, The Netherlands, and the United Kingdom. We focus here in particular on singular-spectrum analysis (SSA), which provides valuable spatial and frequency information of multivariate data and that goes far beyond a pure analysis in the time domain. The spectral methods discussed here are well established in the geosciences and life sciences, but not yet widespread in quantitative economics. In particular, they enable one to identify and describe nonlinear trends and dominant cycles –- including seasonal and interannual components –- that characterize the deterministic behavior of each time series. These tools have already proven their robustness in the application on short and noisy data, and we demonstrate their usefulness in the analysis of the macroeconomic indicators of these three countries. We explore several fundamental indicators of the countries' real aggregate economy in a univariate, as well as a multivariate setting. Starting with individual single-channel analysis, we are able to identify similar spectral components among the analyzed indicators. Next, we consider combinations of indicators and countries, in order to take different effects of comovements into account. Since business cycles are cross-national phenomena, which show common characteristics across countries, our aim is to uncover hidden global behavior across the European economies. Results are compared with previous findings on the U.S. indicators \citepGroth.ea.FEEM.2012. Finally, the analysis is extended to include several indicators from the U.S. economy, in order to examine its influence on the European market.

PDF
2012
Groth, Andreas, Michael Ghil, Stéphane Hallegatte, and Patrice Dumas. “The Role of Oscillatory Modes in U.S. Business Cycles.” Fondazione Eni Enrico Mattei (FEEM) 26 (2012): 1. Publisher's Version Abstract

We apply the advanced time-and-frequency-domain method of singular spectrum analysis to study business cycle dynamics in a set of nine U.S. macroeconomic indicators. This method provides a robust way to identify and reconstruct shared oscillations, whether intermittent or modulated. We address the problem of spurious cycles generated by the use of detrending filters and present a Monte Carlo test to extract significant oscillations. Finally, we demonstrate that the behavior of the U.S. economy changes significantly between episodes of growth and recession; these variations cannot be generated by random shocks alone, in the absence of endogenous variability.

PDF
2011
Coluzzi, Barbara, Michael Ghil, Stéphane Hallegatte, and Gérard Weisbuch. “Boolean delay equations on networks in economics and the geosciences.” International Journal of Bifurcation and Chaos 21, no. 12 (2011): 3511–3548.
PDF
Dumas, Patrice, Michael Ghil, Andreas Groth, and Stéphane Hallegatte. “Dynamic coupling of the climate and macroeconomic systems.” Math. & Sci. hum. / Mathematics and Social Sciences (2011). Abstract

This review paper presents a modeling framework for macroeco- nomic growth dynamics that is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socio-economic phenomena. The challenge is to describe the interfaces between human acti- vities and the functioning of the earth system. We examine the way that this interface works in the presence of endogenous business cycle dynamics, based on a non-equilibrium dynamic model, and review the macroeconomic response to natural disasters. Our model exhibits a larger response to natural disasters during expansions than during recessions, and we raise questions about the as- sessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical fin- dings with observational data, we present a new method for extracting cyclic behavior from the latter, based on multivariate singular spectral analysis.

PDF
2008
Hallegatte, Stéphane, Michael Ghil, Patrice Dumas, and Jean-Charles Hourcade. “Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics.” Journal of Economic Behavior & Organization 67, no. 1 (2008): 57–77. Abstract

This paper presents a non-equilibrium dynamic model (NEDyM) that introduces investment dynamics and non-equilibrium effects into a Solow growth model. NEDyM can reproduce several typical economic regimes and, for certain ranges of parameter values, exhibits endogenous business cycles with realistic characteristics. The cycles arise from the investment-profit instability and are constrained by the increase in labor costs and the inertia of production capacity. For other parameter ranges, the model exhibits chaotic behavior. These results show that complex variability in the economic system may be due to deterministic, intrinsic factors, even if the long-term equilibrium is neo-classical in nature.

PDF
Hallegatte, Stéphane, and Michael Ghil. “Natural disasters impacting a macroeconomic model with endogenous dynamics.” Ecological Economics 68, no. 1-2 (2008): 582–592. Abstract

We investigate the macroeconomic response to natural disasters by using an endogenous business cycle (EnBC) model in which cyclical behavior arises from the investment-profit instability. Our model exhibits a larger response to natural disasters during expansions than during recessions. This apparently paradoxical result can be traced to the disasters amplifying pre-existing disequilibria during expansions, while the existence of unused resources during recessions damps the exogenous shocks. It thus appears that high-growth periods are also highly vulnerable to supply-side shocks. In our EnBC model, the average production loss due to a set of disasters distributed at random in time is highly sensitive to the dynamical characteristics of the impacted economy. Larger economic flexibility allows for a more efficient and rapid response to supply-side shocks and reduces production losses. On the other hand, too high a flexibility can lead to vulnerability phases that cause average production losses to soar. These results raise questions about the assessment of climate change damages or natural disaster losses that are based purely on long-term growth models.

PDF