The monograph covers the fundamentals and the consequences of extreme geophysical phenomena like asteroid impacts, climatic change, earthquakes, tsunamis, hurricanes, landslides, volcanic eruptions, flooding, and space weather. This monograph also addresses their associated, local and worldwide socio-economic impacts. The understanding and modeling of these phenomena is critical to the development of timely worldwide strategies for the prediction of natural and anthropogenic extreme events, in order to mitigate their adverse consequences. This monograph is unique in as much as it is dedicated to recent theoretical, numerical and empirical developments that aim to improve: (i) the understanding, modeling and prediction of extreme events in the geosciences, and, (ii) the quantitative evaluation of their economic consequences. The emphasis is on coupled, integrative assessment of the physical phenomena and their socio-economic impacts. With its overarching theme, Extreme Events: Observations, Modeling and Economics will be relevant to and become an important tool for researchers and practitioners in the fields of hazard and risk analysis in general, as well as to those with a special interest in climate change, atmospheric and oceanic sciences, seismo-tectonics, hydrology, and space weather.
Groth, Andreas, Patrice Dumas, Michael Ghil, and Stéphane Hallegatte. “
Impacts of natural disasters on a dynamic economy.” In
Extreme Events : Observations, Modeling, and Economics,
edited by Eric Chavez, Michael Ghil, and Jaime Urrutia-Fucugauchi, 343–360. American Geophysical Union and Wiley-Blackwell, 2015.
Abstract This chapter presents a modeling framework for macroeconomic growth dynamics; it is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socioeconomic phe nomena. The challenge is to describe the interfaces between human activities and the functioning of the earth system. We examine the way in which this interface works in the presence of endogenous business cycle dynam ics, based on a nonequilibrium dynamic model. Recent findings about the macroeconomic response to natural disasters in such a nonequilibrium setting have shown a more severe response to natural disasters during expan sions than during recessions. These findings raise questions about the assessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical findings with observational data, we analyze cyclic behavior in the U.S. economy, based on multivariate singular spectrum analysis. We analyze a total of nine aggregate indicators in a 52 year interval (1954–2005) and demon strate that the behavior of the U.S. economy changes significantly between intervals of growth and recession, with higher volatility during expansions.
PDFWe apply multivariate singular spectrum analysis to the study of U.S. business cycle dynamics. This method provides a robust way to identify and reconstruct oscillations, whether intermittent or modulated. We show such oscillations to be associated with comovements across the entire economy. The problem of spurious cycles generated by the use of detrending filters is addressed and we present a Monte Carlo test to extract significant oscillations. The behavior of the U.S. economy is shown to change significantly from one phase of the business cycle to another: the recession phase is dominated by a five-year mode, while the expansion phase exhibits more complex dynamics, with higher-frequency modes coming into play. We show that the variations so identified cannot be generated by random shocks alone, as assumed in ‘real’ business-cycle models, and that endogenous, deterministically generated variability has to be involved.
PDF