Intraseasonal Oscillations in a Barotropic Model with Annual Cycle, and Their Predictability


Strong, Christopher, Fei-fei Jin, and Michael Ghil. “Intraseasonal Oscillations in a Barotropic Model with Annual Cycle, and Their Predictability.” Journal of the Atmospheric Sciences 52, no. 15 (1995): 2627–2642.


Observational and modeling studies have shown that intraseasonal, 40-day oscillations over the Northern Hemisphere extratropics are strongest around the winter season. To explore intraseasonal variability in the presence of the annual cycle, an eigenanalysis method based on Floquet theory is used. This approach helps us determine the stability of the large-scale, midlatitude atmospheric flow's periodic basic state. It gives information about the growth rate of the unstable, intraseasonal eigenmode and confirms the atmosphere's preference for intraseasonal activity during the winter months, as the annual cycle modulates the eigenvector field. This eigenmode solution, furthermore, provides a basis for making extended-range (40-day) streamfunction-anomaly forecasts on a set of intraseasonal oscillations whose amplitude and phase depend on the season. A simple autoregressive model is developed to shed light on the seasonal dependence of predictive skill for the intraseasonal signal.