Interdecadal oscillations and the warming trend in global temperature time series

Citation:

Ghil, Michael, and Robert Vautard. 1991. “Interdecadal oscillations and the warming trend in global temperature time series.” Nature 350 (6316): 324–327.

Abstract:

The ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr-1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.

Last updated on 08/09/2016