Downwelling-front instability and eddy formation in the Eastern Mediterranean

Citation:

Feliks, Yizhak, and Michael Ghil. 1993. “Downwelling-front instability and eddy formation in the Eastern Mediterranean.” Journal of physical oceanography 23 (1): 61–78.

Abstract:

The instability of the downwelling front along the southern coast of Asia Minor is studied with a multimode quasigeostrophic model. Linear analysis shows that the most unstable wave has a length of about 100 km, The wavelength depends only very weakly on the transversal scale of the front. The wave period is larger by an order of magnitude than the e-folding time; that is, rapid local growth occurs with little propagation. The growth rate is proportional to the maximum of the speed of the downwelling westward jet. The evolution of the frontal waves can be divided into three stages. At first, the evolution is mainly due to linear instability; the second stage is characterized by closed eddy formation; and finally, isolated eddies separate from the front and penetrate into the open sea. The largest amount of available potential energy is transferred to kinetic energy and into the barotropic mode during the second, eddy-forming stage, when several dipoles develop in this mode. The formation of anticyclonic eddies is due to advection of the ridges of the unstable wave's first baroclinic mode by the barotropic dipole. The baroclinic eddies ride on the barotropic dipoles. The propagation of such dipole-rider systems is determined mainly by the evolution of the corresponding barotropic dipole. These results suggest that the warm- and salty-core eddies observed in the Eastern Mediterranean are due, at least in part, to the instability of the downwelling front along the basin's northeastern coastline. There is both qualitative and quantitative similarity between the observed and calculated eddies in their radius (35–50 km), thermal structure, and distribution along the coast.