Andreas Groth

2019
Groth, Andreas. “Impact of interannual climate variability on the agricultural sector in the Sahel region.” CliMathParis 2019, Workshop 3: Coupled climate-ecology-economy modeling and model hierarchies, Institut Henri Poincaré, Paris, France, 2019. Workshop website Abstract

PDF
2018
Sainte Fare Garnot, Vivien, Andreas Groth, and Michael Ghil. “Coupled Climate-Economic Modes in the Sahel's Interannual Variability.” Ecological Economics 153 (2018): 111–123. Abstract
We study the influence of interannual climate variability on the economy of several countries in the Sahel region. In the agricultural sector, we are able to identify coupled climate-economic modes that are statistically significant on interannual time scales. In particular, precipitation is a key climatic factor for agriculture in this semi-arid region. Locality and diversity characterize the Sahel's climatic and economic system, with the coupled climate-economic patterns exhibiting substantial differences from country to country. Large-scale atmospheric patterns — like the El Niño–Southern Oscillation and its quasi-biennial and quasi-quadrennial oscillatory modes — have quite limited influence on the economies, while more location-specific rainfall patterns play an important role.
PDF
Ghil, Michael, Andreas Groth, Dmitri Kondrashov, and Andrew W. Robertson. “Extratropical sub-seasonal–to–seasonal oscillations and multiple regimes: The dynamical systems view.” In The Gap between Weather and Climate Forecasting: Sub-Seasonal to Seasonal Prediction, edited by Andrew W. Robertson and Frederic Vitart, 119-142. 1st ed. Elsevier, 2018. Publisher's Version Abstract

This chapter considers the sub-seasonal–to–seasonal (S2S) prediction problem as intrinsically more difficult than either short-range weather prediction or interannual–to–multidecadal climate prediction. The difficulty arises from the comparable importance of atmospheric initial states and of parameter values in determining the atmospheric evolution on the S2S time scale. The chapter relies on the theoretical framework of dynamical systems and the practical tools this framework helps provide to low-order modeling and prediction of S2S variability. The emphasis is on mid-latitude variability and the complementarity of the nonlinear-waves vs. multiple-regime points of view in understanding this variability. Empirical model reduction and the forecast skill of the models thus produced in real-time prediction are reviewed.

2017
Groth, Andreas, and Michael Ghil. “Synchronization of world economic activity.” Chaos 27, no. 12 (2017): 127002. Abstract

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.

PDF
Groth, Andreas, and Michael Ghil. Synchronization of world economic activity. Paris: Chair Energy & Prosperity, 2017. Publisher's version Abstract

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era. These findings raise therefore questions about assessments of climate change impacts that are based purely on long-term economic growth models. A key conclusion is the importance of endogenous-dynamics e?ects at the interface between natural climate variability and economic fluctuations.

Groth, Andreas, Yizhak Feliks, Dmitri Kondrashov, and Michael Ghil. “Interannual variability in the North Atlantic ocean’s temperature field and its association with the wind stress forcing.” Journal of Climate 30, no. 7 (2017): 2655-2678. Abstract

Spectral analyses of the North Atlantic temperature field in the Simple Ocean Data Analysis (SODA) reanalysis identify prominent and statistically significant interannual oscillations along the Gulf Stream front and in large regions of the North Atlantic. A 7–8-yr oscillatory mode is characterized by a basin-wide southwest-to-northeast–oriented propagation pattern in the sea surface temperature (SST) field. This pattern is found to be linked to a seesaw in the meridional-dipole structure of the zonal wind stress forcing (TAUX). In the subpolar gyre, the SST and TAUX fields of this mode are shown to be in phase opposition, which suggests a cooling effect of the wind stress on the upper ocean layer. Over all, this mode’s temperature field is characterized by a strong equivalent-barotropic component, as shown by covariations in SSTs and sea surface heights, and by phase-coherent behavior of temperature layers at depth with the SST field. Recent improvements of multivariate singular spectrum analysis (M-SSA) help separate spatio-temporal patterns. This methodology is developed further and applied to studying the ocean’s response to variability in the atmospheric forcing. Statistical evidence is shown to exist for other mechanisms generating oceanic variability of similar 7–8-yr periodicity in the Gulf Stream region; the latter variability is likewise characterized by a strongly equivalent-barotropic component. Two other modes of biennial variability in the Gulf Stream region are also identified, and it is shown that interannual variability in this region cannot be explained by the ocean’s response to similar variability in the atmospheric forcing alone.

PDF North Atlantic SST 7.7-yr mode
2016

Spectral analyses of the North Atlantic temperature field in the Simple Ocean Data Analysis (SODA) reanalysis identify prominent and statistically significant interannual oscillations along the Gulf Stream front and in large regions of the North Atlantic. A 7--8-yr oscillatory mode is characterized by a basin-wide southwest-to-northeast--oriented propagation pattern in the sea-surface temperature (SST) field. This pattern is found to be linked to a seesaw in the meridional-dipole structure of the zonal wind-stress forcing (TAUX). In the subpolar gyre, the SST and TAUX fields of this mode are shown to be in phase opposition, which suggests a cooling effect of the wind stress on the upper ocean layer. Over all, this mode's temperature field is characterized by a strong equivalent-barotropic component, as shown by covariations in SST and sea-surface height (SSH), and by phase-coherent behavior of temperature layers at depth with the SST field. On the other hand, this mode shares many features of the gyre mode and raises the possibilty for the existence of an intrinsic oceanic mode of similar 7--8-yr period in the Gulf Stream region.

PDF North Atlantic SST 7.7-yr mode
Sella, Lisa, Gianna Vivaldo, Andreas Groth, and Michael Ghil. “Economic Cycles and Their Synchronization: A Comparison of Cyclic Modes in Three European Countries.” Journal of Business Cycle Research 12, no. 1 (2016): 25-48. Publisher's Version Abstract

The present work applies singular spectrum analysis (SSA) to the study of macroeconomic fluctuations in three European countries: Italy, The Netherlands, and the United Kingdom. This advanced spectral method provides valuable spatial and frequency information for multivariate data sets and goes far beyond the classical forms of time domain analysis. In particular, SSA enables us to identify dominant cycles that characterize the deterministic behavior of each time series separately, as well as their shared behavior. We demonstrate its usefulness by analyzing several fundamental indicators of the three countries' real aggregate economy in a univariate, as well as a multivariate setting. Since business cycles are international phenomena, which show common characteristics across countries, our aim is to uncover supranational behavior within the set of representative European economies selected herein. Finally, the analysis is extended to include several indicators from the U.S. economy, in order to examine its influence on the European economies under study and their interrelationships.

PDF
Edeline, Eric, Andreas Groth, Bernard Cazelles, David Claessen, Ian J. Winfield, Jan Ohlberger, L. Asbjørn Vøllestad, Nils C. Stenseth, and Michael Ghil. “Pathogens trigger top-down climate forcing on ecosystem dynamics.” Oecologia (2016): 1–14. Abstract

Evaluating the effects of climate variation on ecosystems is of paramount importance for our ability to forecast and mitigate the consequences of global change. However, the ways in which complex food webs respond to climate variations remain poorly understood. Here, we use long-term time series to investigate the effects of temperature variation on the intraguild-predation (IGP) system of Windermere (UK), a lake where pike (Esox lucius, top predator) feed on small-sized perch (Perca fluviatilis) but compete with large-sized perch for the same food sources. Spectral analyses of time series reveal that pike recruitment dynamics are temperature controlled. In 1976, expansion of a size-truncating perch pathogen into the lake severely impacted large perch and favoured pike as the IGP-dominant species. This pathogen-induced regime shift to a pike-dominated IGP apparently triggered a temperature-controlled trophic cascade passing through pike down to dissolved nutrients. In simple food chains, warming is predicted to strengthen top–down control by accelerating metabolic rates in ectothermic consumers, while pathogens of top consumers are predicted to dampen this top–down control. In contrast, the local IGP structure in Windermere made warming and pathogens synergistic in their top–down effects on ecosystem functioning. More generally, our results point to top predators as major mediators of community response to global change, and show that size-selective agents (e.g. pathogens, fishers or hunters) may change the topological architecture of food webs and alter whole ecosystem sensitivity to climate variation.

PDF PDF - Supplementary material
2015
Groth, Andreas. “Business cycle analysis and forecasting using advanced spectral methods and data-based low-order models.” 35th International Symposium on Forecasting Riverside, California, June 2015, 2015. Abstract

PDF
Groth, Andreas, Patrice Dumas, Michael Ghil, and Stéphane Hallegatte. “Impacts of natural disasters on a dynamic economy.” In Extreme Events : Observations, Modeling, and Economics, edited by Eric Chavez, Michael Ghil, and Jaime Urrutia-Fucugauchi, 343–360. American Geophysical Union and Wiley-Blackwell, 2015. Abstract

This chapter presents a modeling framework for macroeconomic growth dynamics; it is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socioeconomic phe­ nomena. The challenge is to describe the interfaces between human activities and the functioning of the earth system. We examine the way in which this interface works in the presence of endogenous business cycle dynam­ ics, based on a nonequilibrium dynamic model. Recent findings about the macroeconomic response to natural disasters in such a nonequilibrium setting have shown a more severe response to natural disasters during expan­ sions than during recessions. These findings raise questions about the assessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical findings with observational data, we analyze cyclic behavior in the U.S. economy, based on multivariate singular spectrum analysis. We analyze a total of nine aggregate indicators in a 52 year interval (1954–2005) and demon­ strate that the behavior of the U.S. economy changes significantly between intervals of growth and recession, with higher volatility during expansions.

PDF
Groth, Andreas, and Michael Ghil. “Monte Carlo Singular Spectrum Analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets.” Journal of Climate 28, no. 19 (2015): 7873–7893. Abstract

Singular spectrum analysis (SSA) along with its multivariate extension (M-SSA) provides an efficient way to identify weak oscillatory behavior in high-dimensional data. To prevent the misinterpretation of stochastic fluctuations in short time series as oscillations, Monte Carlo (MC)–type hypothesis tests provide objective criteria for the statistical significance of the oscillatory behavior. Procrustes target rotation is introduced here as a key method for refining previously available MC tests. The proposed modification helps reduce the risk of type-I errors, and it is shown to improve the test’s discriminating power. The reliability of the proposed methodology is examined in an idealized setting for a cluster of harmonic oscillators immersed in red noise. Furthermore, the common method of data compression into a few leading principal components, prior to M-SSA, is reexamined, and its possibly negative effects are discussed. Finally, the generalized Procrustes test is applied to the analysis of interannual variability in the North Atlantic’s sea surface temperature and sea level pressure fields. The results of this analysis provide further evidence for shared mechanisms of variability between the Gulf Stream and the North Atlantic Oscillation in the interannual frequency band.

PDF
Groth, Andreas, Michael Ghil, Stéphane Hallegatte, and Patrice Dumas. “The Role of Oscillatory Modes in U.S. Business Cycles.” OECD Journal: Journal of Business Cycle Measurement and Analysis, no. 2015/1 (2015): 63–81. Abstract

We apply multivariate singular spectrum analysis to the study of U.S. business cycle dynamics. This method provides a robust way to identify and reconstruct oscillations, whether intermittent or modulated. We show such oscillations to be associated with comovements across the entire economy. The problem of spurious cycles generated by the use of detrending filters is addressed and we present a Monte Carlo test to extract significant oscillations. The behavior of the U.S. economy is shown to change significantly from one phase of the business cycle to another: the recession phase is dominated by a five-year mode, while the expansion phase exhibits more complex dynamics, with higher-frequency modes coming into play. We show that the variations so identified cannot be generated by random shocks alone, as assumed in ‘real’ business-cycle models, and that endogenous, deterministically generated variability has to be involved.

PDF
2014
Groth, Andreas. “Interannual variability in the North Atlantic SST and wind forcing.” Seminar at International Research Institute for Climate and Society, Columbia, 2014. Abstract

PDF
Groth, Andreas. “Oscillatory behavior and oscillatory modes.” SSA workshop Bournemouth, September 2014, 2014. Abstract

PDF
2013
Sella, Lisa, Gianna Vivaldo, Andreas Groth, and Michael Ghil. “Economic Cycles and their Synchronization: A spectral survey.” Fondazione Eni Enrico Mattei (FEEM) 105, no. 105 (2013): 1. Publisher's Version Abstract

The present work applies several advanced spectral methods to the analysis of macroeconomic fluctuations in three countries of the European Union: Italy, The Netherlands, and the United Kingdom. We focus here in particular on singular-spectrum analysis (SSA), which provides valuable spatial and frequency information of multivariate data and that goes far beyond a pure analysis in the time domain. The spectral methods discussed here are well established in the geosciences and life sciences, but not yet widespread in quantitative economics. In particular, they enable one to identify and describe nonlinear trends and dominant cycles –- including seasonal and interannual components –- that characterize the deterministic behavior of each time series. These tools have already proven their robustness in the application on short and noisy data, and we demonstrate their usefulness in the analysis of the macroeconomic indicators of these three countries. We explore several fundamental indicators of the countries' real aggregate economy in a univariate, as well as a multivariate setting. Starting with individual single-channel analysis, we are able to identify similar spectral components among the analyzed indicators. Next, we consider combinations of indicators and countries, in order to take different effects of comovements into account. Since business cycles are cross-national phenomena, which show common characteristics across countries, our aim is to uncover hidden global behavior across the European economies. Results are compared with previous findings on the U.S. indicators \citepGroth.ea.FEEM.2012. Finally, the analysis is extended to include several indicators from the U.S. economy, in order to examine its influence on the European market.

PDF
Feliks, Yizhak, Andreas Groth, Andrew W. Robertson, and Michael Ghil. “Oscillatory Climate Modes in the Indian Monsoon, North Atlantic and Tropical Pacific.” Journal of Climate 26 (2013): 9528-–9544. Abstract

This paper explores the three-way interactions between the Indian monsoon, the North Atlantic and the Tropical Pacific. Four climate records were analyzed: the monsoon rainfall in two Indian regions, the Southern Oscillation Index for the Tropical Pacific, and the NAO index for the North Atlantic. The individual records exhibit highly significant oscillatory modes with spectral peaks at 7–8 yr and in the quasi-biennial and quasi-quadrennial bands. The interactions between the three regions were investigated in the light of the synchronization theory of chaotic oscillators. The theory was applied here by combining multichannel singular-spectrum analysis (M-SSA) with a recently introduced varimax rotation of the M-SSA eigenvectors. A key result is that the 7–8-yr and 2.7-yr oscillatory modes in all three regions are synchronized, at least in part. The energy-ratio analysis, as well as time-lag results, suggest that the NAO plays a leading role in the 7–8-yr mode. It was found therewith that the South Asian monsoon is not slaved to forcing from the equatorial Pacific, although it does interact strongly with it. The time-lag analysis pinpointed this to be the case in particular for the quasi-biennial oscillatory modes. Overall, these results confirm that the approach of synchronized oscillators, combined with varimax-rotated M-SSA, is a powerful tool in studying teleconnections between regional climate modes and that it helps identify the mechanisms that operate in various frequency bands. This approach should be readily applicable to ocean modes of variability and to the problems of air-sea interaction as well.

PDF
2012
Groth, Andreas, Michael Ghil, Stéphane Hallegatte, and Patrice Dumas. “The Role of Oscillatory Modes in U.S. Business Cycles.” Fondazione Eni Enrico Mattei (FEEM) 26 (2012): 1. Publisher's Version Abstract

We apply the advanced time-and-frequency-domain method of singular spectrum analysis to study business cycle dynamics in a set of nine U.S. macroeconomic indicators. This method provides a robust way to identify and reconstruct shared oscillations, whether intermittent or modulated. We address the problem of spurious cycles generated by the use of detrending filters and present a Monte Carlo test to extract significant oscillations. Finally, we demonstrate that the behavior of the U.S. economy changes significantly between episodes of growth and recession; these variations cannot be generated by random shocks alone, in the absence of endogenous variability.

PDF
2011
Dumas, Patrice, Michael Ghil, Andreas Groth, and Stéphane Hallegatte. “Dynamic coupling of the climate and macroeconomic systems.” Math. & Sci. hum. / Mathematics and Social Sciences (2011). Abstract

This review paper presents a modeling framework for macroeco- nomic growth dynamics that is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socio-economic phenomena. The challenge is to describe the interfaces between human acti- vities and the functioning of the earth system. We examine the way that this interface works in the presence of endogenous business cycle dynamics, based on a non-equilibrium dynamic model, and review the macroeconomic response to natural disasters. Our model exhibits a larger response to natural disasters during expansions than during recessions, and we raise questions about the as- sessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical fin- dings with observational data, we present a new method for extracting cyclic behavior from the latter, based on multivariate singular spectral analysis.

PDF
Groth, Andreas, and Michael Ghil. “Multivariate singular spectrum analysis and the road to phase synchronization.” Physical Review E 84 (2011): 036206. Abstract

We show that multivariate singular spectrum analysis (M-SSA) greatly helps study phase synchronization in a large system of coupled oscillators and in the presence of high observational noise levels. With no need for detailed knowledge of individual subsystems nor any a priori phase de?nition for each of them, we demonstrate that M-SSA can automatically identify multiple oscillatory modes and detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. As an essential modi?cation of M-SSA, here we introduce variance-maximization (varimax) rotation of the M-SSA eigenvectors to optimally identify synchronized-oscillator clustering.

PDF