This article attempts a unification of the two approaches that have dominated theoretical climate dynamics since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one. This unification, via the theory of random dynamical systems (RDS), allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. We report on high-resolution numerical studies of two idealized models of fundamental interest for climate dynamics. The first of the two is a stochastically forced version of the classical Lorenz model. The second one is a low-dimensional, nonlinear stochastic model of the El Niño-Southern Oscillation (ENSO). These studies provide a good approximation of the two models' global random attractors, as well as of the time-dependent invariant measures supported by these attractors; the latter are shown to have an intuitive physical interpretation as random versions of Sina\"ı-Ruelle-Bowen (SRB) measures.
Spectral analyses of the sea surface temperature (SST) in the Simple Ocean Data Analysis (SODA) reanalysis for the past half-century identify prominent and statistically significant interannual oscillations in two regions along the Gulf Stream front over the North Atlantic. A model of the atmospheric marine boundary layer coupled to a baroclinic quasi-geostrophic model of the free atmosphere is then forced with the SST history from the SODA reanalysis. Two extreme states are found in the atmospheric simulations: they consist of (1) an eastward extension of the westerly jet associated with the front, which occurs mainly during boreal winter; and (2) a quiescent state of very weak flow found predominantly in the summer. This vacillation of the oceanic-front–induced jet in the model is found to exhibit periodicities similar to those identified in the observed Gulf Stream SST front itself. In addition, a close correspondence is found between interannual spectral peaks in the observed North Atlantic Oscillation (NAO) index, and the SODA-induced oscillations in the atmospheric model. In particular, significant oscillatory modes with periods of 8.5, 4.2 and 2.8 years are found in both the observed and simulated indices, and shown to be highly synchronized and of similar energy in both time series. These oscillatory modes in the simulations are shown to be suppressed when either (a) the Gulf Stream front or (b) its interannual oscillations are omitted from the SST field. Moreover, these modes also disappear when (c) the SST front is spatially smoothed, thus confirming that they are indeed induced by the oceanic front.
PDFThis review paper presents a modeling framework for macroeco- nomic growth dynamics that is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socio-economic phenomena. The challenge is to describe the interfaces between human acti- vities and the functioning of the earth system. We examine the way that this interface works in the presence of endogenous business cycle dynamics, based on a non-equilibrium dynamic model, and review the macroeconomic response to natural disasters. Our model exhibits a larger response to natural disasters during expansions than during recessions, and we raise questions about the as- sessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical fin- dings with observational data, we present a new method for extracting cyclic behavior from the latter, based on multivariate singular spectral analysis.
PDFThis study employs NASA's recent satellite measurements of sea-surface temperatures (SSTs) and sea-level winds (SLWs) with missing data filled-in by Singular Spectrum Analysis (SSA), to construct empirical models that capture both intrinsic and SST-dependent aspects of SLW variability. The model construction methodology uses a number of algorithmic innovations that are essential in providing stable estimates of the model's propagator. The best model tested herein is able to faithfully represent the time scales and spatial patterns of anomalies associated with a number of distinct processes. These processes range from the daily synoptic variability to interannual signals presumably associated with oceanic or coupled dynamics. Comparing the simulations of an SLW model forced by the observed SST anomalies with the simulations of an SLW-only model provides preliminary evidence for the ocean driving the atmosphere in the Southern Ocean region.