The spectral resolution and statistical significance of a harmonic analysis obtained by low-order maximum entropy methods (MEM) can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of atmospheric angular momentum (AAM) data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, we detect reliable evidence for intraseasonal and interannual oscillations in AAM. The interannual periods include a quasi-biennial one and low-frequency one of 5 years, both related to the El Niño/Southern Oscillation. In the intraseaonal band, separate oscillations of about 48..5 and 51 days are ascertained.
We have examined systematically oscillatory modes in the Northern Hemisphere and in the tropics. The 700 mb heights were used to analyze extratropical oscillations, and the outgoing longwave radiation to study tropical oscillations in convection. All datasets were band-pass filtered to focus on the intraseasonal (IS) band of 10-120 days. Leading spatial patterns of variability were obtained by applying EOF analysis to these IS data. The leading principal components (PCs) were subjected to singular spectrum analysis (SSA). SSA is a statistical technique related to EOF analysis, but in the time domain, rather than the spatial domain. It helps identify nonlinear oscillations in short and noisy time series.In the Northern Hemisphere, there are two important modes of oscillation with periods near 48 and 23 days, respectively. The 48-day mode is the most important of the two. It has both traveling and standing components, and is dominated by a zonal wavenumber two. The 23-day mode has the spatial structure and propagation properties described by Branstator and by Kushnir.In the tropics, the 40-50 day oscillation documented by Madden and Julian, Weickmann, Lau, their colleagues, and many other authors dominates the Indian and Pacific oceans from 60°E to the date line. From 170°W to 90°W, however, a 24-28 day oscillation is equally strong. The extratropical modes are often independent of, and sometimes lead, the tropical modes.
In Part II of this two-part article, we complete the systematic examination of oscillatory modes in the global atmosphere by studying 12 years of 500 mb geopotential heights in the Southern Hemisphere. As in Part I, for the tropics and Northern Hemisphere extratropics, the data were band-pass filtered to focus on intraseasonal (IS) phenomena, and spatial EOFs were obtained. The leading principal components were subjected to singular spectrum analysis (SSA), in order to identify nonlinear IS oscillations with high statistical confidence.In the Southern Hemisphere, the dominant mode has a period of 23 days, with spatial patterns carried by the second and third winter EOF of the IS band. It has a zonal wavenumber-four structure. The 40-day mode is second, and dominated by wavenumbers three and four, while a 16-day mode is too weak to separate its spatial behavior from the previous two. The IS dynamics in the Southern Hemisphere is more complex and dominated by shorter wavenumbers than the Northern Hemisphere. No statistically significant correlations between the Southern Hemisphere and the tropics or the Northern Hemisphere are apparent in the IS band.
The ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr-1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.