Statistical methods

Moron V, Vautard R, Ghil M. Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dynamics. 1998;14 (7) :545–569.Abstract

This study aims at a global description of climatic phenomena that exhibit some regularity during the twentieth century. Multi-channel singular spectrum analysis is used to extract long-term trends and quasi-regular oscillations of global sea-surface temperature (SST) fields since 1901. Regional analyses are also performed on the Pacific, (Northern and Southern) Atlantic, and Indian Ocean basins. The strongest climatic signal is the irregular long-term trend, characterized by overall warming during 1910–1940 and since 1975, with cooling (especially of the Northern Hemisphere) between these two warming intervals. Substantial cooling prevailed in the North Pacific between 1950 and 1980, and continues in the North Atlantic today. Both cooling and warming are preceded by SST anomalies of the same sign in the subpolar North Atlantic. Near-decadal oscillations are present primarily over the North Atlantic, but also over the South Atlantic and the Indian Ocean. A 13–15-y oscillation exhibits a seesaw pattern between the Gulf-Stream region and the North-Atlantic Drift and affects also the tropical Atlantic. Another 7–8-y oscillation involves the entire double-gyre circulation of the North Atlantic, being mostly of one sign across the basin, with a minor maximum of opposite sign in the subpolar gyre and the major maximum in the northwestern part of the subtropical gyre. Three distinct interannual signals are found, with periods of about 60–65, 45 and 24–30 months. All three are strongest in the tropical Eastern Pacific. The first two extend throughout the whole Pacific and still exhibit some consistent, albeit weak, patterns in other ocean basins. The latter is weaker overall and has no consistent signature outside the Pacific. The 60-month oscillation obtains primarily before the 1960s and the 45-month oscillation afterwards.

Yiou P, Sornette D, Ghil M. Data-adaptive wavelets and multi-scale singular-spectrum analysis. Physica D. 2000;142 (3-4) :254–290.Abstract

Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series, including the case where intermittency gives rise to the divergence of their variance. The wavelet transform resembles a local Fourier transform within a finite moving window whose width W, proportional to the major period of interest, is varied to explore a broad range of such periods. SSA, on the other hand, relies on the construction of the lag-correlation matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W=M[Delta]t with [Delta]t as the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M<=W<=N, where N is the length of the time series. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-correlation matrix C(M) as data-adaptive wavelets; successive eigenvectors of C(M) correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain by a suitable localization of the signal's correlation matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic or geophysical time series. The method is applied next to the monthly values of the Southern Oscillation Index (SOI) for 1933-1996; the SOI time series is widely believed to capture major features of the El Niño/Southern Oscillation (ENSO) in the Tropical Pacific. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 5 and 3 years supports the Devil's staircase scenario for the ENSO phenomenon (preliminary results of this study were presented at the XXII General Assembly of the European Geophysical Society, Vienna, May 1997, and at the Fall Meeting of the American Geophysical Union, San Francisco, December 1997).

Groth A, Ghil M. Monte Carlo Singular Spectrum Analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets. Journal of Climate. 2015;28 (19) :7873–7893.Abstract

Singular spectrum analysis (SSA) along with its multivariate extension (M-SSA) provides an efficient way to identify weak oscillatory behavior in high-dimensional data. To prevent the misinterpretation of stochastic fluctuations in short time series as oscillations, Monte Carlo (MC)–type hypothesis tests provide objective criteria for the statistical significance of the oscillatory behavior. Procrustes target rotation is introduced here as a key method for refining previously available MC tests. The proposed modification helps reduce the risk of type-I errors, and it is shown to improve the test’s discriminating power. The reliability of the proposed methodology is examined in an idealized setting for a cluster of harmonic oscillators immersed in red noise. Furthermore, the common method of data compression into a few leading principal components, prior to M-SSA, is reexamined, and its possibly negative effects are discussed. Finally, the generalized Procrustes test is applied to the analysis of interannual variability in the North Atlantic’s sea surface temperature and sea level pressure fields. The results of this analysis provide further evidence for shared mechanisms of variability between the Gulf Stream and the North Atlantic Oscillation in the interannual frequency band.

Plaut G, Ghil M, Vautard R. Interannual and Interdecadal Variability in 335 Years of Central England Temperatures. Science. 1995;268 (5211) :710–713.Abstract

Understanding the natural variability of climate is important for predicting its near-term evolution. Models of the oceans' thermohaline and wind-driven circulation show low-frequency oscillations. Long instrumental records can help validate the oscillatory behavior of these models. Singular spectrum analysis applied to the 335-year-long central England temperature (CET) record has identified climate oscillations with interannual (7- to 8-year) and interdecadal (15- and 25-year) periods, probably related to the North Atlantic's wind-driven and thermohaline circulation, respectively. Statistical prediction of oscillatory variability shows CETs decreasing toward the end of this decade and rising again into the middle of the next.

Pages