Ocean & coupled ocean

Sushama L, Ghil M, Ide K. Spatio-temporal variability in a mid-latitude ocean basin subject to periodic wind forcing. Atmosphere-ocean. 2007;45 (4) :227–250.Abstract

The mid-latitude ocean's response to time-dependent zonal wind-stress forcing is studied using a reduced-gravity, 1.5-layer, shallow-water model in two rectangular ocean basins of different sizes. The small basin is 1000 km $\times$ 2000 km and the larger one is 3000 km $\times$ 2010 km; the aspect ratio of the larger basin is quite similar to that of the North Atlantic between 20$\deg$N and 60$\deg$N. The parameter dependence of the model solutions and their spatio-temporal variability subject to time-independent wind stress forcing serve as the reference against which the results for time-dependent forcing are compared. For the time-dependent forcing case, three zonal-wind profiles that mimic the seasonal cycle are considered in this study: (1) a fixed-profile wind-stress forcing with periodically varying intensity; (2) a wind-stress profile with fixed intensity, but north–south migration of the mid-latitude westerly wind maximum; and (3) a north–south migrating profile with periodically varying intensity. Results of the small-basin simulations show the intrinsic variability found for time-independent forcing to persist when the intensity of the wind forcing varies periodically. It thus appears that the physics behind the upper ocean's variability is mainly controlled by internal dynamics, although the solutions’ spatial patterns are now more complex, due to the interaction between the external and internal modes of variability. The north–south migration of wind forcing, however, does inhibit the inertial recirculation; its suppression increases with the amplitude of north–south migration in the wind-stress forcing. Model solutions in the larger rectangular basin and at smaller viscosity exhibit more realistic recirculation gyres, with a small meridional-to-zonal aspect ratio, and an elongated eastward jet; the low-frequency variability of these solutions is dominated by periodicities of 14 and 6–7 years. Simulations performed in this setting with a wind-stress profile that involves seasonal variations of realistic amplitude in both the intensity and the position of the atmospheric jet show the seven-year periodicity in the oceanic circulation to be robust. The intrinsic variability is reinforced by the periodic variations in the jet's intensity and weakened by periodic variations in the meridional position; the two effects cancel, roughly speaking, thus preserving the overall characteristics of the seven-year mode.

Pierini S, Ghil M, Chekroun MD. Exploring the pullback attractors of a low-order quasigeostrophic ocean model: The deterministic case. Journal of Climate. 2016;29 (11) :4185-4202.Abstract

A low-order quasigeostrophic double-gyre ocean model is subjected to an aperiodic forcing that mimics time dependence dominated by interdecadal variability. This model is used as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The study relies on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), that is, of the time-dependent invariant sets attracting all trajectories initialized in the remote past. The existence of a global PBA is rigorously demonstrated for this weakly dissipative nonlinear model. Ensemble simulations are carried out and the convergence to PBAs is assessed by computing the probability density function (PDF) of localization of the trajectories. A sensitivity analysis with respect to forcing amplitude shows that the PBAs experience large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while less dramatic changes occur in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is then analyzed. Two types of basins of attraction coexist for certain parameter ranges; they contain chaotic and nonchaotic trajectories, respectively. The statistics of the former does not depend on the initial states whereas the trajectories in the latter converge to small portions of the global PBA. This complex scenario requires separate PDFs for chaotic and nonchaotic trajectories. General implications for climate predictability are finally discussed.

Dijkstra HA, Ghil M. Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Reviews of Geophysics. 2005;43.Abstract

Oceanic variability on interannual, interdecadal, and longer timescales plays a key role in climate variability and climate change. Paleoclimatic records suggest major changes in the location and rate of deepwater formation in the Atlantic and Southern oceans on timescales from millennia to millions of years. Instrumental records of increasing duration and spatial coverage document substantial variability in the path and intensity of ocean surface currents on timescales of months to decades. We review recent theoretical and numerical results that help explain the physical processes governing the large-scale ocean circulation and its intrinsic variability. To do so, we apply systematically the methods of dynamical systems theory. The dynamical systems approach is proving successful for more and more detailed and realistic models, up to and including oceanic and coupled ocean-atmosphere general circulation models. In this approach one follows the road from simple, highly symmetric model solutions, through a “bifurcation tree,” toward the observed, complex behavior of the system under investigation. The observed variability can be shown to have its roots in simple transitions from a circulation with high symmetry in space and regularity in time to circulations with successively lower symmetry in space and less regularity in time. This road of successive bifurcations leads through multiple equilibria to oscillatory and eventually chaotic solutions. Key features of this approach are illustrated in detail for simplified models of two basic problems of the ocean circulation. First, a barotropic model is used to capture major features of the wind-driven ocean circulation and of the changes in its behavior as wind stress increases. Second, a zonally averaged model is used to show how the thermohaline ocean circulation changes as buoyancy fluxes at the surface increase. For the wind-driven circulation, multiple separation patterns of a “Gulf-Stream like” eastward jet are obtained. These multiple equilibria are followed by subannual and interannual oscillations of the jet and of the entire basin's circulation. The multiple equilibria of the thermohaline circulation include deepwater formation near the equator, near either pole or both, as well as intermediate possibilities that bear some degree of resemblance to the currently observed Atlantic overturning pattern. Some of these multiple equilibria are subject, in turn, to oscillatory instabilities with timescales of decades, centuries, and millennia. Interdecadal and centennial oscillations are the ones of greatest interest in the current debate on global warming and on the relative roles of natural and anthropogenic variability in it. They involve the physics of the truly three-dimensional coupling between the wind-driven and thermohaline circulation. To arrive at this three-dimensional picture, the bifurcation tree is sketched out for increasingly complex models for both the wind-driven and the thermohaline circulation.

Pages