Ocean & coupled ocean

Brachet S, Codron F, Feliks Y, Ghil M, Le Treut H, Simonnet E. Atmospheric circulations induced by a midlatitude SST front: A GCM study. Journal of Climate. 2012;25 (6) :1847–1853.Abstract

The atmospheric effects of sea surface temperature (SST) anomalies over and near western boundary currents are a matter of renewed interest. The general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMD-Z) has a zooming capability that allows a regionally increased resolution. This GCM is used to analyze the impact of a sharp SST front in the North Atlantic Ocean: two simulations are compared, one with climatological SSTs and the other with an enhanced Gulf Stream front. The results corroborate the theory developed previously by the present team to explain the impact of oceanic fronts. In this theory, the vertical velocity at the top of the atmospheric boundary layer has two components: mechanical and thermal. It is the latter that is dominant in the tropics, while in midlatitudes both play a role in determining the wind convergence above the boundary layer. The strengthened SST front does generate the previously predicted stronger ascent above the warmer water south of the front and stronger descent above the colder waters to the north. In the GCM simulations, the ascent over the warm anomalies is deeper and more intense than the descent.

Simonnet E, Ghil M, Ide K, Temam R, Wang S. Low-Frequency Variability in Shallow-Water Models of the Wind-Driven Ocean Circulation. Part I: Steady-State Solution. Journal of Physical Oceanography. 2003;33 (4).Abstract

Successive bifurcations—from steady states through periodic to aperiodic solutions—are studied in a shallow- water, reduced-gravity, 2 ½ -layer model of the midlatitude ocean circulation subject to time-independent wind stress. The bifurcation sequence is studied in detail for a rectangular basin with an idealized spatial pattern of wind stress. The aperiodic behavior is studied also in a North Atlantic–shaped basin with realistic continental contours. The bifurcation sequence in the rectangular basin is studied in Part I, the present article. It follows essentially the one reported for single-layer quasigeostrophic and 1 ½ -layer shallow-water models. As the intensity of the north– south-symmetric, zonal wind stress is increased, the nearly symmetric double-gyre circulation is destabilized through a perturbed pitchfork bifurcation. The low-stress steady solution, with its nearly equal subtropical and subpolar gyres, is replaced by an approximately mirror-symmetric pair of stable equilibria. The two solution branches so obtained are named after the inertial recirculation cell that is stronger, subtropical or subpolar, respectively. This perturbed pitchfork bifurcation and the associated Hopf bifurcations are robust to changes in the interface friction between the two active layers and the thickness H 2 of the lower active layer. They persist in the presence of asymmetries in the wind stress and of changes in the model’s spatial resolution and finite- difference scheme. Time-dependent model behavior in the rectangular basin, as well as in the more realistic, North Atlantic–shaped one, is studied in Part II.

Jiang N, Neelin JD, Ghil M. Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Climate Dynamics. 1995;12 :101–112.Abstract

Evaluation of competing El Niño/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (4°N-4°S), using 1950 1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In time-longitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the “devil's staircase” interaction mechanism between the annual cycle and ENSO.

Chekroun MD, Kondrashov D, Ghil M. Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation. Proceedings of the National Academy of Sciences. 2011;108 (29) :11766–11771.Abstract

Interannual and interdecadal prediction are major challenges of climate dynamics. In this article we develop a prediction method for climate processes that exhibit low-frequency variability (LFV). The method constructs a nonlinear stochastic model from past observations and estimates a path of the “weather” noise that drives this model over previous finite-time windows. The method has two steps: (i) select noise samples—or “snippets”—from the past noise, which have forced the system during short-time intervals that resemble the LFV phase just preceding the currently observed state; and (ii) use these snippets to drive the system from the current state into the future. The method is placed in the framework of pathwise linear-response theory and is then applied to an El Niño–Southern Oscillation (ENSO) model derived by the empirical model reduction (EMR) methodology; this nonlinear model has 40 coupled, slow, and fast variables. The domain of validity of this forecasting procedure depends on the nature of the system’s pathwise response; it is shown numerically that the ENSO model’s response is linear on interannual time scales. As a result, the method’s skill at a 6- to 16-month lead is highly competitive when compared with currently used dynamic and statistic prediction methods for the Niño-3 index and the global sea surface temperature field.

Kondrashov D, Sun C, Ghil M. Data Assimilation for a Coupled Ocean–Atmosphere Model. Part II: Parameter Estimation. Monthly Weather Review. 2008;136 :5062–5076.Abstract

The parameter estimation problem for the coupled ocean–atmosphere system in the tropical Pacific Ocean is investigated using an advanced sequential estimator [i.e., the extended Kalman filter (EKF)]. The intermediate coupled model (ICM) used in this paper consists of a prognostic upper-ocean model and a diagnostic atmospheric model. Model errors arise from the uncertainty in atmospheric wind stress. First, the state and parameters are estimated in an identical-twin framework, based on incomplete and inaccurate observations of the model state. Two parameters are estimated by including them into an augmented state vector. Model-generated oceanic datasets are assimilated to produce a time-continuous, dynamically consistent description of the model’s El Niño–Southern Oscillation (ENSO). State estimation without correcting erroneous parameter values still permits recovering the true state to a certain extent, depending on the quality and accuracy of the observations and the size of the discrepancy in the parameters. Estimating both state and parameter values simultaneously, though, produces much better results. Next, real sea surface temperatures observations from the tropical Pacific are assimilated for a 30-yr period (1975–2004). Estimating both the state and parameters by the EKF method helps to track the observations better, even when the ICM is not capable of simulating all the details of the observed state. Furthermore, unobserved ocean variables, such as zonal currents, are improved when model parameters are estimated. A key advantage of using this augmented-state approach is that the incremental cost of applying the EKF to joint state and parameter estimation is small relative to the cost of state estimation alone. A similar approach generalizes various reduced-state approximations of the EKF and could improve simulations and forecasts using large, realistic models.

Feliks Y, Ghil M, Robertson AW. The atmospheric circulation over the North Atlantic as induced by the SST field. Journal of Climate. 2011;24 :522–542.Abstract

Spectral analyses of the sea surface temperature (SST) in the Simple Ocean Data Analysis (SODA) reanalysis for the past half-century identify prominent and statistically significant interannual oscillations in two regions along the Gulf Stream front over the North Atlantic. A model of the atmospheric marine boundary layer coupled to a baroclinic quasi-geostrophic model of the free atmosphere is then forced with the SST history from the SODA reanalysis. Two extreme states are found in the atmospheric simulations: they consist of (1) an eastward extension of the westerly jet associated with the front, which occurs mainly during boreal winter; and (2) a quiescent state of very weak flow found predominantly in the summer. This vacillation of the oceanic-front–induced jet in the model is found to exhibit periodicities similar to those identified in the observed Gulf Stream SST front itself. In addition, a close correspondence is found between interannual spectral peaks in the observed North Atlantic Oscillation (NAO) index, and the SODA-induced oscillations in the atmospheric model. In particular, significant oscillatory modes with periods of 8.5, 4.2 and 2.8 years are found in both the observed and simulated indices, and shown to be highly synchronized and of similar energy in both time series. These oscillatory modes in the simulations are shown to be suppressed when either (a) the Gulf Stream front or (b) its interannual oscillations are omitted from the SST field. Moreover, these modes also disappear when (c) the SST front is spatially smoothed, thus confirming that they are indeed induced by the oceanic front.

Unal YS, Ghil M. Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics. 1995;11 (5) :255–278.Abstract

Relative sea-level height (RSLH) data at 213 tide-gauge stations have been analyzed on a monthly and an annual basis to study interannual and interdecadal oscillations, respectively. The main tools of the study are singular spectrum analysis (SSA) and multi-channel SSA (M-SSA). Very-low-frequency variability of RSLH was filtered by SSA to estimate the linear trend at each station. Global sea-level rise, after postglacial rebound corrections, has been found to equal 1.62±0.38 mm/y, by averaging over 175 stations which have a trend consistent with the neighboring ones. We have identified two dominant time scales of El Niño-Southern Oscillation (ENSO) variability, quasi-biennial and low-frequency, in the RSLH data at almost all stations. However, the amplitudes of both ENSO signals are higher in the equatorial Pacific and along the west coast of North America. RSLH data were interpolated along ocean coasts by latitudinal intervals of 5 or 10 degrees, depending on station density. Interannual variability was then examined by M-SSA in five regions: eastern Pacific (25°S–55°N at 10° resolution), western Pacific (35°S–45°N at 10°), equatorial Pacific (123°E–169°W, 6 stations), eastern Atlantic (30°S, 0°, and 30°N–70°N at 5°) and western Atlantic (50°S–50°N at 10°). Throughout the Pacific, we have found three dominant spatio-temporal oscillatory patterns, associated with time scales of ENSO variability; their periods are 2, 2.5–3 and 4–6 y. In the eastern Pacific, the biennial mode and the 6-y low-frequency mode propagate poleward. There is a southward propagation of low-frequency modes in the western Pacific RSLH, between 35°N and 5°S, but no clear propagation in the latitudes further south. However, equatorward propagation of the biennial signal is very clear in the Southern Hemisphere. In the equatorial Pacific, both the quasi-quadrennial and quasi-biennial modes at 10°N propagate westward. Strong and weak El Niño years are evident in the sea-level time series reconstructed from the quasi-biennial and low-frequency modes. Interannual variability with periods of 3 and 4–8 y is detected in the Atlantic RSLH data. In the eastern Atlantic region, we have found slow propagation of both modes northward and southward, away from 40–45°N. Interdecadal oscillations were studied using 81 stations with sufficiently long and continuous records. Most of these have variability at 9–13 and some at 18 y. Two significant eigenmode pairs, corresponding to periods of 11.6 and 12.8 y, are found in the eastern and western Atlantic ocean at latitudes 40°N–70°N and 10°N–50°N, respectively.

Kravtsov S, Kondrashov D, Kamenkovich I, Ghil M. An empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean. Ocean Science [Internet]. 2011;7 (6) :755–770. Publisher's VersionAbstract

This study employs NASA's recent satellite measurements of sea-surface temperatures (SSTs) and sea-level winds (SLWs) with missing data filled-in by Singular Spectrum Analysis (SSA), to construct empirical models that capture both intrinsic and SST-dependent aspects of SLW variability. The model construction methodology uses a number of algorithmic innovations that are essential in providing stable estimates of the model's propagator. The best model tested herein is able to faithfully represent the time scales and spatial patterns of anomalies associated with a number of distinct processes. These processes range from the daily synoptic variability to interannual signals presumably associated with oceanic or coupled dynamics. Comparing the simulations of an SLW model forced by the observed SST anomalies with the simulations of an SLW-only model provides preliminary evidence for the ocean driving the atmosphere in the Southern Ocean region.

Pages