Dynamical systems

Chekroun MD, Neelin JD, Kondrashov D, McWilliams JC, Ghil M. Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances. Proceedings of the National Academy of Sciences. 2014;111 (5) :1684-1690.Abstract

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.

Simonnet E, Ghil M, Dijkstra H. Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. Journal of Marine Research. 2005;63 (5) :931–956.Abstract

The wind-driven double-gyre circulation in a rectangular basin goes through several dynamical regimes as the amount of lateral friction is decreased. This paper studies the transition to irregular flow in the double-gyre circulation by applying dynamical systems methodology to a quasi-geostrophic, equivalent-barotropic model with a 10-km resolution. The origin of the irregularities, in space and time, is the occurrence of homoclinic bifurcations that involve phase-space behavior far from stationary solutions. The connection between these homoclinic bifurcations and earlier transitions, which occur at larger lateral friction, is explained. The earlier transitions, such as pitchfork and asymmetric Hopf bifurcation, only involve the nonlinear saturation of linear instabilities, while the homoclinic bifurcations are associated with genuinely nonlinear behavior. The sequence of bifurcations—pitchfork, Hopf, and homoclinic—is independent of the lateral friction and may be described as the unfolding of a singularity that occurs in the frictionless, Hamiltonian limit of the governing equations. Two distinct chaotic regimes are identified: Lorenz chaos at relatively large lateral friction versus Shilnikov chaos at relatively small lateral friction. Both types of homoclinic bifurcations induce chaotic behavior of the recirculation gyres that is dominated by relaxation oscillations with a well-defined period. The relevance of these results to the mid-latitude oceans' observed low-frequency variations is discussed. A previously documented 7-year peak in observed North-Atlantic variability is shown to exist across a hierarchy of models that share the gyre modes and homoclinic bifurcations discussed herein.

Chekroun MD, Ghil M, Liu H, Wang S. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - Series S. 2016;36 (8) :4133-4177.Abstract

This article revisits the approximation problem of systems of nonlinear delay differential equations (DDEs) by a set of ordinary differential equations (ODEs). We work in Hilbert spaces endowed with a natural inner product including a point mass, and introduce polynomials orthogonal with respect to such an inner product that live in the domain of the linear operator associated with the underlying DDE. These polynomials are then used to design a general Galerkin scheme for which we derive rigorous convergence results and show that it can be numerically implemented via simple analytic formulas. The scheme so obtained is applied to three nonlinear DDEs, two autonomous and one forced: (i) a simple DDE with distributed delays whose solutions recall Brownian motion; (ii) a DDE with a discrete delay that exhibits bimodal and chaotic dynamics; and (iii) a periodically forced DDE with two discrete delays arising in climate dynamics. In all three cases, the Galerkin scheme introduced in this article provides a good approximation by low-dimensional ODE systems of the DDE's strange attractor, as well as of the statistical features that characterize its nonlinear dynamics.

Pages