Dynamical systems

Chekroun MD, Simonnet E, Ghil M. Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Physica D. 2011;240 (21) :1685-–1700.Abstract
This article attempts a unification of the two approaches that have dominated theoretical climate dynamics since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one. This unification, via the theory of random dynamical systems (RDS), allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. We report on high-resolution numerical studies of two idealized models of fundamental interest for climate dynamics. The first of the two is a stochastically forced version of the classical Lorenz model. The second one is a low-dimensional, nonlinear stochastic model of the El Niño-Southern Oscillation (ENSO). These studies provide a good approximation of the two models' global random attractors, as well as of the time-dependent invariant measures supported by these attractors; the latter are shown to have an intuitive physical interpretation as random versions of Sina\"ı-Ruelle-Bowen (SRB) measures.
Simonnet E, Ghil M, Dijkstra H. Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. Journal of Marine Research. 2005;63 (5) :931–956.Abstract

The wind-driven double-gyre circulation in a rectangular basin goes through several dynamical regimes as the amount of lateral friction is decreased. This paper studies the transition to irregular flow in the double-gyre circulation by applying dynamical systems methodology to a quasi-geostrophic, equivalent-barotropic model with a 10-km resolution. The origin of the irregularities, in space and time, is the occurrence of homoclinic bifurcations that involve phase-space behavior far from stationary solutions. The connection between these homoclinic bifurcations and earlier transitions, which occur at larger lateral friction, is explained. The earlier transitions, such as pitchfork and asymmetric Hopf bifurcation, only involve the nonlinear saturation of linear instabilities, while the homoclinic bifurcations are associated with genuinely nonlinear behavior. The sequence of bifurcations—pitchfork, Hopf, and homoclinic—is independent of the lateral friction and may be described as the unfolding of a singularity that occurs in the frictionless, Hamiltonian limit of the governing equations. Two distinct chaotic regimes are identified: Lorenz chaos at relatively large lateral friction versus Shilnikov chaos at relatively small lateral friction. Both types of homoclinic bifurcations induce chaotic behavior of the recirculation gyres that is dominated by relaxation oscillations with a well-defined period. The relevance of these results to the mid-latitude oceans' observed low-frequency variations is discussed. A previously documented 7-year peak in observed North-Atlantic variability is shown to exist across a hierarchy of models that share the gyre modes and homoclinic bifurcations discussed herein.

Chekroun MD, Ghil M, Liu H, Wang S. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - Series S. 2016;36 (8) :4133-4177.Abstract

This article revisits the approximation problem of systems of nonlinear delay differential equations (DDEs) by a set of ordinary differential equations (ODEs). We work in Hilbert spaces endowed with a natural inner product including a point mass, and introduce polynomials orthogonal with respect to such an inner product that live in the domain of the linear operator associated with the underlying DDE. These polynomials are then used to design a general Galerkin scheme for which we derive rigorous convergence results and show that it can be numerically implemented via simple analytic formulas. The scheme so obtained is applied to three nonlinear DDEs, two autonomous and one forced: (i) a simple DDE with distributed delays whose solutions recall Brownian motion; (ii) a DDE with a discrete delay that exhibits bimodal and chaotic dynamics; and (iii) a periodically forced DDE with two discrete delays arising in climate dynamics. In all three cases, the Galerkin scheme introduced in this article provides a good approximation by low-dimensional ODE systems of the DDE's strange attractor, as well as of the statistical features that characterize its nonlinear dynamics.

Chekroun MD, Neelin JD, Kondrashov D, McWilliams JC, Ghil M. Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances. Proceedings of the National Academy of Sciences. 2014;111 (5) :1684-1690.Abstract

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.

Groth A, Dumas P, Ghil M, Hallegatte S. Impacts of natural disasters on a dynamic economy. In: Chavez E, Ghil M, Urrutia-Fucugauchi J Extreme Events : Observations, Modeling, and Economics. American Geophysical Union and Wiley-Blackwell ; 2015. pp. 343–360.Abstract

This chapter presents a modeling framework for macroeconomic growth dynamics; it is motivated by recent attempts to formulate and study “integrated models” of the coupling between natural and socioeconomic phe­ nomena. The challenge is to describe the interfaces between human activities and the functioning of the earth system. We examine the way in which this interface works in the presence of endogenous business cycle dynam­ ics, based on a nonequilibrium dynamic model. Recent findings about the macroeconomic response to natural disasters in such a nonequilibrium setting have shown a more severe response to natural disasters during expan­ sions than during recessions. These findings raise questions about the assessment of climate change damages or natural disaster losses that are based purely on long-term growth models. In order to compare the theoretical findings with observational data, we analyze cyclic behavior in the U.S. economy, based on multivariate singular spectrum analysis. We analyze a total of nine aggregate indicators in a 52 year interval (1954–2005) and demon­ strate that the behavior of the U.S. economy changes significantly between intervals of growth and recession, with higher volatility during expansions.

Vautard R, Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D. 1989;35 (3) :395–424.Abstract

We distinguish between two dimensions of a dynamical system given by experimental time series. Statistical dimension gives a theoretical upper bound for the minimal number of degrees of freedom required to describe tje attractor up to the accuracy of the data, taking into account sampling and noise problems. The dynamical dimension is the intrinsic dimension of the attractor and does not depend on the quality of the data. Singular Spectrum Analysis (SSA) provides estimates of the statistical dimension. SSA also describes the main physical phenomena reflected by the data. It gives adaptive spectral filters associated with the dominant oscillations of the system and clarifies the noise characteristics of the data. We apply SSA to four paleoclimatic records. The principal climatic oscillations, and the regime changes in their amplitude are detected. About 10 degrees of freedom are statistically significant in the data. Large noise and insufficient sample length do not allow reliable estimates of the dynamical dimension.

Dijkstra HA, Ghil M. Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Reviews of Geophysics. 2005;43.Abstract

Oceanic variability on interannual, interdecadal, and longer timescales plays a key role in climate variability and climate change. Paleoclimatic records suggest major changes in the location and rate of deepwater formation in the Atlantic and Southern oceans on timescales from millennia to millions of years. Instrumental records of increasing duration and spatial coverage document substantial variability in the path and intensity of ocean surface currents on timescales of months to decades. We review recent theoretical and numerical results that help explain the physical processes governing the large-scale ocean circulation and its intrinsic variability. To do so, we apply systematically the methods of dynamical systems theory. The dynamical systems approach is proving successful for more and more detailed and realistic models, up to and including oceanic and coupled ocean-atmosphere general circulation models. In this approach one follows the road from simple, highly symmetric model solutions, through a “bifurcation tree,” toward the observed, complex behavior of the system under investigation. The observed variability can be shown to have its roots in simple transitions from a circulation with high symmetry in space and regularity in time to circulations with successively lower symmetry in space and less regularity in time. This road of successive bifurcations leads through multiple equilibria to oscillatory and eventually chaotic solutions. Key features of this approach are illustrated in detail for simplified models of two basic problems of the ocean circulation. First, a barotropic model is used to capture major features of the wind-driven ocean circulation and of the changes in its behavior as wind stress increases. Second, a zonally averaged model is used to show how the thermohaline ocean circulation changes as buoyancy fluxes at the surface increase. For the wind-driven circulation, multiple separation patterns of a “Gulf-Stream like” eastward jet are obtained. These multiple equilibria are followed by subannual and interannual oscillations of the jet and of the entire basin's circulation. The multiple equilibria of the thermohaline circulation include deepwater formation near the equator, near either pole or both, as well as intermediate possibilities that bear some degree of resemblance to the currently observed Atlantic overturning pattern. Some of these multiple equilibria are subject, in turn, to oscillatory instabilities with timescales of decades, centuries, and millennia. Interdecadal and centennial oscillations are the ones of greatest interest in the current debate on global warming and on the relative roles of natural and anthropogenic variability in it. They involve the physics of the truly three-dimensional coupling between the wind-driven and thermohaline circulation. To arrive at this three-dimensional picture, the bifurcation tree is sketched out for increasingly complex models for both the wind-driven and the thermohaline circulation.