Dynamical systems

Ghil M, Groth A, Kondrashov D, Robertson AW. Extratropical sub-seasonal–to–seasonal oscillations and multiple regimes: The dynamical systems view. In: Robertson AW, Vitart F The Gap between Weather and Climate Forecasting: Sub-Seasonal to Seasonal Prediction. 1st ed. Elsevier ; 2018. pp. 119-142. Publisher's VersionAbstract

This chapter considers the sub-seasonal–to–seasonal (S2S) prediction problem as intrinsically more difficult than either short-range weather prediction or interannual–to–multidecadal climate prediction. The difficulty arises from the comparable importance of atmospheric initial states and of parameter values in determining the atmospheric evolution on the S2S time scale. The chapter relies on the theoretical framework of dynamical systems and the practical tools this framework helps provide to low-order modeling and prediction of S2S variability. The emphasis is on mid-latitude variability and the complementarity of the nonlinear-waves vs. multiple-regime points of view in understanding this variability. Empirical model reduction and the forecast skill of the models thus produced in real-time prediction are reviewed.

Colon C, Claessen D, Ghil M. Bifurcation analysis of an agent-based model for predator–prey interactions. Ecological Modelling [Internet]. 2015;317 :93 - 106. Publisher's VersionAbstract

Abstract The Rosenzweig–MacArthur model is a set of ordinary differential equations (ODEs) that provides an aggregate description of the dynamics of a predator–prey system. When including an Allee effect on the prey, this model exhibits bistability and contains a pitchfork bifurcation, a Hopf bifurcation and a heteroclinic bifurcation. We develop an agent-based model (ABM) on a two-dimensional, square lattice that encompasses the key assumptions of the aggregate model. Although the two modelling approaches – \ODE\ and \ABM\ – differ, both models exhibit similar bifurcation patterns. The \ABM\ model's behaviour is richer and it is analysed using advanced statistical methods. In particular, singular spectrum analysis is used to robustly locate the transition between apparently random, small-amplitude fluctuations around a fixed point and stable, large-amplitude oscillations. Critical slowing down of model trajectories anticipates the heteroclinic bifurcation. Systematic comparison between the \ABM\ and the \ODE\ models’ behaviour helps one understand the predator–prey system better; it provides guidance in model exploration and allows one to draw more robust conclusions on the nature of predator–prey interactions.

Ghil M. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems - A. 2017;37 (1) :189-228.Abstract

The large-scale, near-surface flow of the mid-latitude oceans is dominated by the presence of a larger, anticyclonic and a smaller, cyclonic gyre. The two gyres share the eastward extension of western boundary currents, such as the Gulf Stream or Kuroshio, and are induced by the shear in the winds that cross the respective ocean basins. This physical phenomenology is described mathematically by a hierarchy of systems of nonlinear partial differential equations (PDEs). We study the low-frequency variability of this wind-driven, double-gyre circulation in mid-latitude ocean basins, subject to time-constant, purely periodic and more general forms of time-dependent wind stress. Both analytical and numerical methods of dynamical systems theory are applied to the PDE systems of interest. Recent work has focused on the application of non-autonomous and random forcing to double-gyre models. We discuss the associated pullback and random attractors and the non-uniqueness of the invariant measures that are obtained. The presentation moves from observations of the geophysical phenomena to modeling them and on to a proper mathematical understanding of the models thus obtained. Connections are made with the highly topical issues of climate change and climate sensitivity.

Spyratos V, Bourgeron PS, Ghil M. Development at the wildland urban interface and the mitigation of forest-fire risk. Proceedings of the National Academy of Sciences. 2007;104 (36) :14272–14276.Abstract

This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.