Dynamical systems

Ghil M, Simonnet E. Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences. In: Cannarsa P, Mansutti D, Provenzale A Mathematical Approach to Climate Change and its Impacts: MAC2I. Springer International Publishing ; 2020. pp. 3–81.Abstract
This contribution introduces the dynamics of shallow and rotating flows that characterizes large-scale motions of the atmosphere and oceans. It then focuses on an important aspect of climate dynamics on interannual and interdecadal scales, namely the wind-driven ocean circulation. Studying the variability of this circulation and slow changes therein is treated as an application of the theory of nonautonomous dynamical systems. The contribution concludes by discussing the relevance of these mathematical concepts and methods for the highly topical issues of climate change and climate sensitivity.
Ghil M, Lucarini V. The Physics of Climate Variability and Climate Change. [Internet]. In Press. arxivAbstract
The climate system is a forced, dissipative, nonlinear, complex and heterogeneous system that is out of thermodynamic equilibrium. The system exhibits natural variability on many scales of motion, in time as well as space, and it is subject to various external forcings, natural as well as anthropogenic. This paper reviews the observational evidence on climate phenomena and the governing equations of planetary-scale flow, as well as presenting the key concept of a hierarchy of models as used in the climate sciences. Recent advances in the application of dynamical systems theory, on the one hand, and of nonequilibrium statistical physics, on the other, are brought together for the first time and shown to complement each other in helping understand and predict the system's behavior. These complementary points of view permit a self-consistent handling of subgrid-scale phenomena as stochastic processes, as well as a unified handling of natural climate variability and forced climate change, along with a treatment of the crucial issues of climate sensitivity, response, and predictability.
Ghil M, Groth A, Kondrashov D, Robertson AW. Extratropical sub-seasonal–to–seasonal oscillations and multiple regimes: The dynamical systems view. In: Robertson AW, Vitart F The Gap between Weather and Climate Forecasting: Sub-Seasonal to Seasonal Prediction. 1st ed. Elsevier ; 2018. pp. 119-142. Publisher's VersionAbstract

This chapter considers the sub-seasonal–to–seasonal (S2S) prediction problem as intrinsically more difficult than either short-range weather prediction or interannual–to–multidecadal climate prediction. The difficulty arises from the comparable importance of atmospheric initial states and of parameter values in determining the atmospheric evolution on the S2S time scale. The chapter relies on the theoretical framework of dynamical systems and the practical tools this framework helps provide to low-order modeling and prediction of S2S variability. The emphasis is on mid-latitude variability and the complementarity of the nonlinear-waves vs. multiple-regime points of view in understanding this variability. Empirical model reduction and the forecast skill of the models thus produced in real-time prediction are reviewed.

Colon C, Claessen D, Ghil M. Bifurcation analysis of an agent-based model for predator–prey interactions. Ecological Modelling [Internet]. 2015;317 :93 - 106. Publisher's VersionAbstract

Abstract The Rosenzweig–MacArthur model is a set of ordinary differential equations (ODEs) that provides an aggregate description of the dynamics of a predator–prey system. When including an Allee effect on the prey, this model exhibits bistability and contains a pitchfork bifurcation, a Hopf bifurcation and a heteroclinic bifurcation. We develop an agent-based model (ABM) on a two-dimensional, square lattice that encompasses the key assumptions of the aggregate model. Although the two modelling approaches – \ODE\ and \ABM\ – differ, both models exhibit similar bifurcation patterns. The \ABM\ model's behaviour is richer and it is analysed using advanced statistical methods. In particular, singular spectrum analysis is used to robustly locate the transition between apparently random, small-amplitude fluctuations around a fixed point and stable, large-amplitude oscillations. Critical slowing down of model trajectories anticipates the heteroclinic bifurcation. Systematic comparison between the \ABM\ and the \ODE\ models’ behaviour helps one understand the predator–prey system better; it provides guidance in model exploration and allows one to draw more robust conclusions on the nature of predator–prey interactions.