In the Theoretical Climate Dynamics (TCD) group we study climate dynamics on all time scales – from intraseasonal, through interannual and interdecadal, to millenial – using the methods of dynamical systems theory. We apply these methods to observations, numerical models, and experiments concerning the climate system – the atmosphere, ocean, bio- and cryosphere – through collaboration with researchers in North America and on other continents.

Latest News

More news

Recent Publications

Groth, Andreas, and Michael Ghil. Forthcoming. “Synchronization of world economic activity.” Chaos 27 (12). Abstract

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.

Groth, Andreas, Yizhak Feliks, Dmitri Kondrashov, and Michael Ghil. 2017. “Interannual variability in the North Atlantic ocean’s temperature field and its association with the wind stress forcing.” Journal of Climate 30 (7): 2655-2678. Abstract

Spectral analyses of the North Atlantic temperature field in the Simple Ocean Data Analysis (SODA) reanalysis identify prominent and statistically significant interannual oscillations along the Gulf Stream front and in large regions of the North Atlantic. A 7–8-yr oscillatory mode is characterized by a basin-wide southwest-to-northeast–oriented propagation pattern in the sea surface temperature (SST) field. This pattern is found to be linked to a seesaw in the meridional-dipole structure of the zonal wind stress forcing (TAUX). In the subpolar gyre, the SST and TAUX fields of this mode are shown to be in phase opposition, which suggests a cooling effect of the wind stress on the upper ocean layer. Over all, this mode’s temperature field is characterized by a strong equivalent-barotropic component, as shown by covariations in SSTs and sea surface heights, and by phase-coherent behavior of temperature layers at depth with the SST field. Recent improvements of multivariate singular spectrum analysis (M-SSA) help separate spatio-temporal patterns. This methodology is developed further and applied to studying the ocean’s response to variability in the atmospheric forcing. Statistical evidence is shown to exist for other mechanisms generating oceanic variability of similar 7–8-yr periodicity in the Gulf Stream region; the latter variability is likewise characterized by a strongly equivalent-barotropic component. Two other modes of biennial variability in the Gulf Stream region are also identified, and it is shown that interannual variability in this region cannot be explained by the ocean’s response to similar variability in the atmospheric forcing alone.

Ghil, Michael. 2017. “The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem.” Discrete and Continuous Dynamical Systems - A 37 (1): 189-228. Abstract

The large-scale, near-surface flow of the mid-latitude oceans is dominated by the presence of a larger, anticyclonic and a smaller, cyclonic gyre. The two gyres share the eastward extension of western boundary currents, such as the Gulf Stream or Kuroshio, and are induced by the shear in the winds that cross the respective ocean basins. This physical phenomenology is described mathematically by a hierarchy of systems of nonlinear partial differential equations (PDEs). We study the low-frequency variability of this wind-driven, double-gyre circulation in mid-latitude ocean basins, subject to time-constant, purely periodic and more general forms of time-dependent wind stress. Both analytical and numerical methods of dynamical systems theory are applied to the PDE systems of interest. Recent work has focused on the application of non-autonomous and random forcing to double-gyre models. We discuss the associated pullback and random attractors and the non-uniqueness of the invariant measures that are obtained. The presentation moves from observations of the geophysical phenomena to modeling them and on to a proper mathematical understanding of the models thus obtained. Connections are made with the highly topical issues of climate change and climate sensitivity.

More publications

Recent Presentations

Kondrashov, Dmitri. 2017. “Data-adaptive Harmonic Decomposition and Real-time Prediction of 2016 September Arctic Sea Ice Extent.” 4th Polar Prediction Workshop, 27-30 March 2017, Bremerhaven, Germany. Workshop Website Abstract

Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e.~from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models.

Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, the real-time DAH-MSLM predictions outperformed most statistical models and physics-based models in 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.

This is a joint work with Mickael Chekroun (UCLA) and Michael Ghil (UCLA,ENS). 

More presentations