Dynamical Controls on Bottom Water Transport and Transformation across the Antarctic Circumpolar Current

Citation:

Schmidgall CR, Si Y, Stewart AL, Thompson AF, Hogg AMC. Dynamical Controls on Bottom Water Transport and Transformation across the Antarctic Circumpolar Current. Journal of Physical Oceanography [Internet]. 2023;53 :1917-1940.
Download PDF5.79 MB

Abstract:

The export of Antarctic Bottom Water (AABW) supplies the bottom cell of the global overturning circulation and plays a key role in regulating climate. This AABW outflow must cross, and is therefore mediated by, the Antarctic Circumpolar Current (ACC). Previous studies present widely varying conceptions of the role of the ACC in directing AABW across the Southern Ocean, suggesting either that AABW may be zonally recirculated by the ACC, or that AABW may flow northward within deep western boundary currents (DWBC) against bathymetry. In this study the authors investigate how the forcing and geometry of the ACC influences the transport and transformation of AABW using a suite of process-oriented model simulations. The model exhibits a strong dependence on the elevation of bathymetry relative to AABW layer thickness: higher meridional ridges suppress zonal AABW exchange, increase the strength of flow in the DWBC, and reduce the meridional variation in AABW density across the ACC. Furthermore, the transport and transformation vary with density within the AABW layer, with denser varieties of AABW being less efficiently transported between basins. These findings indicate that changes in the thickness of the AABW layer, for example, due to changes in Antarctic shelf processes, and tectonic changes in the sea floor shape may alter the pathways and transformation of AABW across the ACC.

Publisher's Version

Last updated on 08/24/2023