Interannual variability
in the North Atlantic SST and wind forcing

Andreas Groth
Department of Atmospheric and Oceanic Sciences
UCLA, Los Angeles

in cooperation with
Yizhak Feliks Michael Ghil Dmitri Kondrashov

IRI Seminar
May 23, 2014
Outline

1 Methodology
 - Multivariate Singular Spectrum Analysis
 - Varimax rotation of ST-EOFs
 - Significance test
 - Compression onto a few PCs

2 Interannual variability in the North Atlantic
 - The SODA reanalysis
 - Low-frequency variability in the double-gyre circulation
 - Interannual variability in SODA
 - Intrinsic vs. external variation
Outline

1 Methodology
 - Multivariate Singular Spectrum Analysis
 - Varimax rotation of ST-EOFs
 - Significance test
 - Compression onto a few PCs

2 Interannual variability in the North Atlantic
 - The SODA reanalysis
 - Low-frequency variability in the double-gyre circulation
 - Interannual variability in SODA
 - Intrinsic vs. external variation
Multivariate Singular Spectrum Analysis

Idea: Reconstruct dynamics from time-delayed embedding (Mañé-Takens)

Data: Multivariate time series $\mathbf{x}(n) = \{x_d(n)\}$

$d = 1 \ldots D$ channels; length $n = 1 \ldots N$

Temporal embedding (T): Window length M

$$
\mathbf{X}_d = \begin{pmatrix}
 x_d(1) & x_d(2) & \ldots & x_d(M) \\
 x_d(2) & x_d(3) & \ldots & x_d(M+1) \\
 \vdots & \vdots & \ddots & \vdots \\
 x_d(N') & x_d(N' + 1) & \ldots & x_d(N)
\end{pmatrix}
$$

reduced length $N' = N - M + 1$

Spatial embedding (S): Concatenate all channels; size $N \times D \cdot M$

$$
\mathbf{X} = \begin{pmatrix}
 \mathbf{X}_1 & \mathbf{X}_2 & \ldots & \mathbf{X}_D
\end{pmatrix}
$$
Multivariate Singular Spectrum Analysis

Extract information from \(X = \begin{pmatrix} X_1 & X_2 & \ldots & X_D \end{pmatrix} \) via Principal Component Analysis (PCA)

1. Compute covariance matrix \(C = X'X \)
2. Eigendecomposition \(\Lambda = E'CE \) gives
 - diagonal matrix \(\Lambda \) of eigenvalues \(\lambda_k \) (variance)
 - orthogonal matrix \(E \) of eigenvectors \(e_k \) (ST-EOFs)
3. Projection \(A = XE \) gives principal components (PCs)
4. Reconstruction \(AKE' = X_k \) gives reconstructed components (RCs)

\((\text{Broomhead\&King 1986; Vautard\&Ghil 1989; Ghil et al., Reviews of Geophysics 2002}) \)

SSA toolkit at http://www.atmos.ucla.edu/tcd/ssa
Time series: composite of 4 harmonic oscillations + AR(1) noise
General problem of M-SSA and PCA: degenerate eigenvalues \rightarrow mixture of eigenvectors

Solution: modified varimax rotation of ST-EOFs \((Groth&Ghil, PRE, 2011)\)
Varimax rotation of ST-EOFs

- Improved separation between oscillations
- Unimodal eigenvectors without frequency mixing
- Simplified physical interpretation
Varimax rotation of ST-EOFs

Bivariate M-SSA analysis of NAO and SOI indices

▶ Absence of rotation → spurious correlations

(Feliks, Groth, Robertson & Ghil, J. Climate 2013)
Deterministic oscillations ↔ stochastic fluctuations?

Karhunen-Loève theorem: Spectral decomposition of stochastic process
Deterministic oscillations \leftrightarrow stochastic fluctuations?

Karhunen-Loève theorem: Spectral decomposition of stochastic process
Significance test

Monte Carlo type significance test of eigenvalues

Surrogate data: \(\mathbf{x}_S \rightarrow \text{embedding} \ \mathbf{X}_S \); e.g. from AR(1) process

Covariance matrix: \(\mathbf{C}_S = \mathbf{X}'_S \mathbf{X}_S \)

Projection: \(\Lambda_P = \mathbf{E}' \mathbf{C}_S \mathbf{E} \)

Comparison: \(\Lambda = \mathbf{E}' \mathbf{C} \ \mathbf{E} \)

(Allen&Smith, J. Climate 1996)
Monte Carlo type significance test of eigenvalues

Significance test

Surrogate data: $x_S \rightarrow$ embedding X_S; e.g. from AR(1) process

Covariance matrix: $C_S = X'_S X_S$

Projection: $\Lambda_P = E' C_S E$

Comparison: $\Lambda = E' C E$

(Allen & Smith, J. Climate 1996)
Significance test

Idea: Match eigenvectors & eigenvalues

Improved significance test

Surrogate data: $x_S \rightarrow$ embedding X_S

Covariance matrix: $C_S = X'_S X_S$

SSA: $\Lambda_S = E'_S C_S E_S \quad \leftrightarrow \quad \Lambda = E' C E$

Orthogonal rotation: T that best matches $E_S \Sigma_S T$ with $E \Sigma$

$(\Sigma = \Lambda^{1/2}$ singular values$)$

Procrustes solution:

- Singular Value Decomposition (SVD)

 $(E_S \Sigma_S)' E \Sigma = U S V'$

- $T = U V'$

Comparison: $\Lambda_T = T' \Lambda_S T \quad \leftrightarrow \quad \Lambda$

Note: classical test $\Lambda_P = E' C_S E \equiv E' E_S \Lambda_S E'_S E \equiv \tilde{T}' \Lambda_S \tilde{T}$

compares only eigenvectors
Deterministic oscillations \leftrightarrow stochastic fluctuations?
Significance test

- Classical significance test
- New significance test

Deterministic oscillations \leftrightarrow stochastic fluctuations?

- Discriminant power substantially improved
Significance test

Sensitivity vs. specificity

N = 250 | M = 40

false positives (FP) | # true positives (TP)

--- classical test

--- improved test

Andreas Groth, AOS, UCLA (14)

Interannual variability

IRI seminar 14 / 32
Significance test

Artificial variance compression

(a) Specificity

(b) Distribution of true oscillations

Classical test: high-rank eigenvalues are more likely to be significant

Improved test: Specificity in high-rank eigenvalues increased
Compression onto a few PCs

Problem: Analysis of high-dimensional data; $D \gg N$

Approach: Compression onto S-EOFs from conventional PCA analysis

- **(a)** Noise-free reference
- **(b)** $L = 3$, $\text{Var} = 49\%$, $\langle k \rangle = 5$, RMS = 0.66
- **(c)** $L = 10$, $\text{Var} = 86\%$, $\langle k \rangle = 3$, RMS = 0.30
- **(d)** $L = 130$, $\text{Var} = 100\%$, $\langle k \rangle = 2$, RMS = 0.20

- M-SSA ST-EOFs are biased toward S-EOFs at strong compression
- In case of three PCs, only standing waves are extracted
Compression onto a few PCs

Problem: Analysis of high-dimensional data; $D \gg N$

Approach: Compression onto S-EOFs from conventional PCA analysis

- Sensitivity shrinks at strong compression

![Graph showing the fraction of variance and number of TP/FP rotations against L for different datasets and compression levels.](image)
Methodology — Conclusions

1. Varimax rotation of ST-EOFs improves frequency separation
2. Procrustes rotation improves discriminant power of significance test
3. M-SSA ST-EOFs are less biased toward S-EOFs for weak/no compression
Outline

1 Methodology
- Multivariate Singular Spectrum Analysis
- Varimax rotation of ST-EOFs
- Significance test
- Compression onto a few PCs

2 Interannual variability in the North Atlantic
- The SODA reanalysis
- Low-frequency variability in the double-gyre circulation
- Interannual variability in SODA
- Intrinsic vs. external variation
Simple Ocean Data Assimilation

- SODA reanalysis of ocean climate variability, version 2.2.4
 \[\text{(Giese and Ray 2011)} \]
- monthly dataset over the 137-yr interval 1871-2008
- Assimilation of hydrographic and SST data into a model of the global ocean forced with surface boundary conditions from the atmospheric 20CRv2 reanalysis
 \[\text{(Compo et al. 2011)} \]

Dataset in this analysis

- Sea surface temperature (SST) \+ temperature at different depth
- Zonal surface wind stress (TAUX)
- Sea surface height (SSH)
- North Atlantic region
- Interannual activity \Rightarrow annual subsampling (Chebyshev filter)
 \[\text{(Feliks, Groth, Robertson & Ghil, J. Climate 2013)} \]
Low-frequency variability in the double-gyre circulation

- Mid-latitude, wind-driven ocean circulation
- Nonlinear effects break the symmetry; pitchfork bifurcation
- Time-dependent solution; alternation between stronger subtropical and stronger subpolar gyre \((\text{Jiang, Jin, Ghil, 1995})\)
- Interannual variability; e.g. displacement in Gulf Stream axis \((\text{Speich et al. 1995; Simonnet et al. 2003, 2005, 2009; Dijkstra & Ghil, 2005})\)
- 7–8-yr oscillation that involves the entire North Atlantic; e.g. M-SSA analysis of the UK Met Office SSTs in 1895-1994 interval — but only standing waves extracted due to strong compression \((\text{Moron et al. 1998})\)
- and many more
Low-frequency variability in the double-gyre circulation

- Observed variability in the basin-scale circulation due to
 - changes in the external atmospheric forcing or
 - system’s intrinsic instability and nonlinearity?
- Sharp SST gradients in Gulf Stream region can induce similar low-frequency variability in the overlying atmosphere \cite{Feliks2011}.
- **SODA**: atmosphere is boundary condition acting on the ocean model; possible intrinsic modes in the ocean cannot feed back to the atmospheric dynamics.
- **Question**: To which extent is the interannual variability in SST/SSH linked to TAUX?
Individual M-SSA analyses of

TAUX

SST+SSH

Andreas Groth, AOS, UCLA

Interannual variability

IRI seminar
Interannual variability in SODA

Joint M-SSA analysis of TAUX + SSH + SST

(a) TAUX | max = 0.004
(b) SSH | max = 0.014
(c) SST | max = 0.007
(d) TAUX | max = 0.004
(e) SSH | max = 0.018
(f) SST | max = 0.008
(g) TAUX | max = 0.006
(h) SSH | max = 0.008
(i) SST | max = 0.007

M-SSA indicates joint oscillatory modes; e.g. no frequency separation
Interannual variability in SODA

Phase composites in SST — 7.7-yr oscillation

<table>
<thead>
<tr>
<th>Period</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 yr</td>
<td>-0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>0.8 yr</td>
<td>-0.42</td>
<td>0.47</td>
</tr>
<tr>
<td>1.7 yr</td>
<td>-0.31</td>
<td>0.54</td>
</tr>
<tr>
<td>2.5 yr</td>
<td>-0.23</td>
<td>0.53</td>
</tr>
<tr>
<td>3.4 yr</td>
<td>-0.21</td>
<td>0.48</td>
</tr>
<tr>
<td>4.2 yr</td>
<td>-0.34</td>
<td>0.50</td>
</tr>
<tr>
<td>5.1 yr</td>
<td>-0.56</td>
<td>0.36</td>
</tr>
<tr>
<td>5.9 yr</td>
<td>-0.54</td>
<td>0.27</td>
</tr>
<tr>
<td>6.8 yr</td>
<td>-0.46</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Andreas Groth, AOS, UCLA
Interannual variability in SODA

Phase composites in TAUX + SST — 7.7-yr oscillation

TAUX: Standing wave with strong in-phase behavior — meridional dipole-like pattern

SST: Traveling wave from region south of Cape Hatteras northward till Iceland — reaches after full cycle Great Britain

► High anomalies in TAUX correspond to low anomalies in SST — cooling effect in particular visible in northern part
Interannual variability in SODA

Covarying phase propagation patterns in SST + SSH

(a) TAUX
(b) SSH
(c) SST

(d) TAUX
(e) SSH
(f) SST

(g) TAUX
(h) SSH
(i) SST
Interannual variability in SODA

Oscillatory patterns at different depth

1. Separate M-SSA analysis of temperature at various depths
2. Rotation onto $\text{TAUX} + \text{SSH} + \text{SST}$ solution
3. Calculation of phase coherence index

- **7.7-yr**: stable ST-EOF pattern over depth
 - Strong equivalent-barotropic component
- **12.7-yr & 2.7-yr**: barotropic component much weaker
- **All three modes**: Cape Hatteras and Grand Banks region show strong equivalent-barotropic component
Intrinsic vs. external variation

- Observed variability in the basin-scale circulation due to
 - changes in the external atmospheric forcing or
 - system’s intrinsic instability and nonlinearity?

Rotation of SST+SSH solution onto TAUX solution --- 7.7-yr mode

North Stronger link between TAUX oscillatory mode and SST+SSH oscillatory mode; here TAUX is strong

GSR SST+SSH oscillatory mode less correlated with TAUX oscillatory mode
Intrinsic vs. external variation

Rotation of SST+SSH solution onto TAUX solution --- 7.7-yr mode

SSH rotated – SSH

Var SST

Var SSH

Andreas Groth, AOS, UCLA
Conclusions

- Interannual variability in both; wind forcing and ocean dynamics
- Meridional dipole-like structure in atmosphere
- Traveling wave in 7.7-yr mode with strong equivalent-barotropic component
 - High anomalies in wind forcing correspond to low anomalies in SST
 - Results in northern part of North Atlantic indicate stronger link to wind forcing
 - Results in Gulf Stream region indicate more intrinsic variability
- Covarying pattern in SSH and SST in 7.7-yr mode
- In all three modes (7.7-yr, 12.7-yr and 2.7-yr) covarying pattern in SSH and SST in Gulf Stream region
M-SSA

Ocean and atmosphere