The Mathematics of Climate Change and of its Impacts

Michael Ghil
Ecole Normale Supérieure, Paris, and
University of California, Los Angeles

Based on joint work with many collaborators,
in math, climate sciences & macroeconomics (*)

(*) Please visit these sites for more info.
https://dept.atmos.ucla.edu/tcd
http://www.environnement.ens.fr/
Dynamical systems and predictability

- The initial-value problem \rightarrow numerical weather prediction (NWP)
 - easiest!
- The asymptotic problem \rightarrow long-term climate
 - a little harder
- The intermediate problem \rightarrow low-frequency variability (LFV) –
 - multiple equilibria, long-periodic oscillations, intermittency, slow transients, “tipping points”
 - hardest!!

Long-term temperature evolution on Earth

Not only do global temperatures move up & down on geological time scales, nor do they just switch from one long-term mean to another: They clearly show changes in dynamic regime — from high to low variability, from one dominant periodicity to another, from high to low drift, and so on.

Overall, to model this complex behavior we do need to consider both chaotic & random ingredients, both intrinsic & forced variability.

Compiled by Glen Fergus, https://commons.wikimedia.org/wiki/File%3AAll_palaeotemps.png

N.B. Plot is ~”log-linear”: time axis is logarithmic+linear, temperature axis is linear.
Composite spectrum of climate variability

Standard treatment of frequency bands:

1. *High frequencies* – *white noise (or “colored”)*
2. *Low frequencies* – *slow evolution of parameters*

* “No known source of deterministic internal variability”
Let’s say CO$_2$ doubles:

How will “climate” change?

1. Climate is in **stable equilibrium** (fixed point); if so, mean temperature will just shift gradually to its new equilibrium value.

2. Climate is **purely periodic**; if so, mean temperature will (maybe) shift gradually to its new equilibrium value. But how will the **period, amplitude and phase** of the limit cycle change?

3. And how about some “real stuff” now: chaotic + random?

Motivation

- The *climate system* is highly *nonlinear and quite complex*.
- The system’s *major components* — the atmosphere, oceans, ice sheets — *evolve* on many time and space scales.
- Its *predictive understanding* has to rely on the system’s physical, chemical and biological modeling, but also on the thorough mathematical analysis of the models thus obtained: *the forest vs. the trees*.
- The *hierarchical modeling* approach allows one to give proper weight to the understanding provided by the models vs. their realism: back-and-forth between “toy” (conceptual) and *detailed* (“realistic”) *models*, and between *models* and *data*.
- How do we disentangle *natural variability* from *the anthropogenic forcing*: *can we & should we, or not?*
Many scales of motion, dominated in the mid-latitudes by (i) the double-gyre circulation; and (ii) the rings and eddies.

Much of the focus of physical oceanography over the ‘70s to ‘90s has been with the “meso-scale”: the meanders, rings & eddies, and the associated two-dimensional and quasi-geostrophic turbulence.

Based on SSTs, from satellite IR data
Kuroshio Extension (KE) Path Changes

Monthly paths from altimeter:
Stable vs. unstable periods

Qiu & Chen (Deep-Sea Res., 2009)
Transitions Between Blocked and Zonal Flows in a Barotropic Rotating Annulus with Topography

Zonal Flow
13–22 Dec. 1978

Blocked Flow
10–19 Jan. 1963

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a contour interval of 60 m for both panels. The plots were obtained by averaging 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to 19 January 1963; the data are from the National Oceanic and Atmospheric Administration's Climate Analysis Center. The nearly zonal flow of (A) includes quasi-stationary, small-amplitude waves (32). Blocked flow advects cold Arctic air southward over eastern North America or Europe, while decreasing precipitation in the continent's western part (26).

Weeks, Tian, Urbach, Ide, Swinney, & Ghil (*Science*, 1997)
“Limited-contour” analysis for atmospheric low-frequency variability

10-day sequences of subtropical jet paths: blocked vs. zonal flow regimes

Kimoto & Ghil, JAS, 1993a
Outline – Unsteady Flows & Climate

• Atmospheric & oceanic flows
 – scales of motion, in time & space
 – one person’s signal ("deterministic") is another one’s noise ("stochastic")

• Time-dependent forcing
 – intrinsic vs. forced variability
 – pullback and random attractors

• An illustrative example
 – the Lorenz convection model with time-dependent forcing

• A “grand unification”
 – a mathematical definition of climate sensitivity

• Conclusions and references
 – what do we & don’t we know?
 – selected bibliography
Greenhouse gases (GHGs) go up, temperatures go up:
It’s gotta do with us, at least a bit, doesn’t it?

Wikicommmons, from Hansen et al. (PNAS, 2006); see also http://data.giss.nasa.gov/gistemp/graphs/
Global warming and its socio-economic impacts

Temperatures rise:
• What about impacts?
• How to adapt?

The answer, my friend, is blowing in the wind, i.e., it depends on the accuracy and reliability of the forecast …

Source: IPCC (2007), AR4, WGI, SPM

Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the ±1 standard deviation range of individual model annual averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy of independent models and observational constraints. (Figures 10.4 and 10.29)
Consider the scalar, linear ordinary differential equation (ODE)

\[\dot{x} = -\alpha x + \sigma t, \quad \alpha > 0, \quad \sigma > 0. \]

When there’s no forcing, \(\sigma = 0 \), the ODE is purely dissipative

\[\dot{x} = -\alpha x, \]

and all solutions converge to the fixed point \(x = 0 \) as \(t \to +\infty \).

Now what about when we do have forcing, \(\sigma \neq 0 \)?
At each time \(t = t_1 \), say, we have to “pull back” and start at some time \(s = s_1 << t_1 \), say, to see where the flow takes us at \(t = t_1 \).
As \(s \to -\infty \), we get the pullback attractor \(a = a(t) \) in the figure,

\[a(t) = \frac{\sigma}{\alpha} (t - \frac{1}{\alpha}). \]
A snapshot of the RA, $\mathcal{A}(\omega)$, computed at a fixed time t and for the same realization ω; it is made up of points transported by the stochastic flow, from the remote past $t - T$, $T \gg 1$.

We use multiplicative noise in the deterministic Lorenz model, with the classical parameter values $b = 8/3$, $\sigma = 10$, and $r = 28$.

Even computed pathwise, this object supports meaningful statistics.
A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short; see SI in Chekroun, Simonnet & Ghil (2011, *Physica D*)
Physically closed system, modeled mathematically as autonomous system: neither deterministic (anthropogenic) nor random (natural) forcing.

The attractor is strange, but still fixed in time ~ “irrational” number.

Climate sensitivity ~ change in the average value (first moment) of the coordinates \((x, y, z)\) as a parameter \(\lambda\) changes.
Physically open system, modeled mathematically as non-autonomous system: allows for deterministic (anthropogenic) as well as random (natural) forcing.

The attractor is “pullback” and evolves in time ~ “imaginary” or “complex” number.

Climate sensitivity ~ change in the statistical properties (first and higher-order moments) of the attractor as one or more parameters (λ, μ, …) change.

Ghil (Encyclopedia of Atmospheric Sciences, 2nd ed., 2012)
How to define climate sensitivity or, What happens when there’s natural variability?

This definition allows us to watch how “the earth moves,” as it is affected by both natural and anthropogenic forcing, in the presence of natural variability, which includes both chaotic & random behavior:

chaotic + random behavior:

Clearly the invariant measure $\nu(t; \mu)$ changes in its position (i.e., its support), as well as in its probability density — with time t, as shown here — but also with respect to an arbitrary parameter μ, where $\mu = \tau$ in the present case. Hence, in general,

$$\gamma = \partial d_W / \partial \mu.$$
Lorenz (JAS, 1963)
Climate is deterministic and autonomous, but highly nonlinear.
Trajectories diverge exponentially, forward asymptotic PDF is multimodal.

Hasselmann (Tellus, 1976)
Climate is stochastic and noise-driven, but quite linear.
Trajectories decay back to the mean, forward asymptotic PDF is unimodal.

Grand unification (?)
Climate is deterministic + stochastic, as well as highly nonlinear.
Internal variability and forcing interact strongly, change and sensitivity refer to both mean and higher moments.
Concluding remarks –

What do we & don’t we know?

What do we know?
• It’s getting warmer.
• We do contribute to it.
• So we should act as best we know and can!

What do we know less well?
• By how much?
 – Is it getting warmer …
 – Do we contribute to it …
• How does the climate system (atmosphere, ocean, ice, etc.) really work?
• How does natural variability interact with anthropogenic forcing?

What to do?
• Better understand the system and its forcings.
• Explore the models’, and the system’s
 – robustness and sensitivity
 – pullback & random attractors
Some general references

Business Cycles and the Impact of Major Natural Hazards

Michael Ghil (ENS, Paris, & UCLA)
with C. Colon & G. Weisbuch (ENS), B. Coluzzi (Roma), A. Groth (UCLA)
P. Dumas, S. Hallegatte (+World Bank) & J.-Ch. Hourcade (CIRED),
L. Sella, P. Terna & G. Vivaldo (U. of Torino)

Please visit these sites for more info.
https://dept.atmos.ucla.edu/tcd/
http://www.environnement.ens.fr/
Motivation

- Coupled climate and socio-economic modeling
- Coordinating EU project on extreme events
 - in the geosciences and the socio-economic sciences
- Novel tools for both data analysis and modeling
 - SSA-MTM Toolkit for time series analysis
 - key tools for nonlinear and random dynamics
 - combined modeling and data studies
Motivation

- **The IPCC process**: Fourth Assessment Report (AR4)
- **3 working groups**: various sources of uncertainties
 - Physical Science Basis
 - Impacts, Adaptation and Vulnerability
 - Mitigation of Climate Change
- **Physical and socio-economic modeling**
 - separate vs. coupled
- **Ethics and policy issues**
Outline

A. Endogenous business cycle (EnBC) model
 - sawtooth-shaped business cycles, 5–6-year period
 - impact of natural hazards
 - vulnerability paradox \(\Rightarrow\) fluctuation-dissipation relation

B. U.S. macroeconomic indicators
 - methodology: singular-spectrum analysis (SSA) +
 multi-channel SSA (M-SSA)
 - BEA data confirm the vulnerability paradox

C. EU & World data – work in progress
 - Italy, Netherlands and UK data, correlations with USA
 - 100 countries representing all economic regions
 - commonalities and differences

D. Concluding remarks & bibliography
The need for models with endogenous dynamics

“The currently prevailing paradigm, namely that financial markets tend towards equilibrium, is both false and misleading; our current troubles can be largely attributed to the fact that the international financial system has been developed on the basis of that paradigm.”

George Soros,
Outline

A. Endogenous business cycle (EnBC) model
 – sawtooth-shaped business cycles, 5–6-year period
 – impact of natural hazards
 – vulnerability paradox ➔ fluctuation-dissipation relation

B. U.S. macroeconomic indicators
 – methodology: singular-spectrum analysis (SSA) + multi-channel SSA (M-SSA)
 – BEA data confirm the vulnerability paradox

C. EU & World data – work in progress
 – Italy, Netherlands and UK data, correlations with USA
 – 100 countries representing all economic regions
 – commonalities and differences

D. Concluding remarks & bibliography
NEDyM (Non-equilibrium Dynamic Model)

• Represents an economy with one producer, one consumer, one goods that is used both to consume and invest.

• Based on the Solow (1956) model, in which all equilibrium constraints are replaced by dynamic relationships that involve adjustment delays.

• The NEDyM equilibrium is neo-classical and identical to that in the original Solow model. If the parameters are changing slowly, NEDyM has the same trajectories as the Solow model.

• Because of market adjustment delays, NEDyM model dynamics exhibits Keynesian features, with transient trajectory segments, in response to shocks.

• NEDyM possesses endogenous business cycles!

Hallegatte, Ghil, Dumas & Hourcade (J. Econ. Behavior & Org., 2008)
Endogenous dynamics: an alternative explanation for business cycles
Endogenous business cycles (EnBCs) in NEDyM

• Business cycles originate from the profit–investment relationship (oscillations with a 5–6-year period) – Fukuyama (1989–92)?!
 higher profits => more investments => larger demand => higher profits

• Business cycles are limited in amplitude by three processes:
 – increase in labor costs when employment is high;
 – constraints in production and the consequent inflation in goods prices when demand increases too rapidly;
 – financial constraints on investment.

• EnBC models need to be calibrated and validated
 – harder than for real business cycle models (RBCs):
 fast and slow processes =>
 need a better definition of the business cycles =>
 study of BEA & NBER data!
Catastrophes and the state of the economy – I

A vulnerability paradox: When does a disaster cause greater long-term damage to an economy, during its expansion phase or during a recession?

Catastrophes and the state of the economy – II

A vulnerability paradox:
A disaster that affects an economy during its recession phase…

Business cycle

Economic losses due to a disaster, as a function of the pre-existing economic situation

Limited losses if the disaster affects an economy in recession
Catastrophes and the state of the economy – III

... causes fewer long-term damages than if it occurs during an expansion!

Outline

A. Endogenous business cycle (EnBC) model
 – sawtooth-shaped business cycles, 5–6-year period
 – impact of natural hazards
 – vulnerability paradox \(\Rightarrow \) fluctuation-dissipation relation

B. U.S. macroeconomic indicators
 – methodology: singular-spectrum analysis (SSA) + multi-channel SSA (M-SSA)
 – BEA data confirm the vulnerability paradox

C. EU & World data – work in progress
 – Italy, Netherlands and UK data, correlations with USA
 – 100 countries representing all economic regions
 – commonalities and differences

D. Concluding remarks & bibliography
Singular Spectrum Analysis (SSA) – I

<table>
<thead>
<tr>
<th>Spatial EOFs (PCA)</th>
<th>Temporal EOFs (SSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion</td>
<td></td>
</tr>
<tr>
<td>$\Phi(t, x) = \sum_k a_k(t) e_k(x)$</td>
<td>$X(t, s) = \sum_k a_k(t) e_k(s)$</td>
</tr>
<tr>
<td>Covariance</td>
<td></td>
</tr>
<tr>
<td>$C_\Phi(x, y) = \langle \Phi(t, x)\Phi(t, y) \rangle_t$</td>
<td>$C_X(s, u) = \langle X(t)X(t +</td>
</tr>
<tr>
<td>Eigendecomposition</td>
<td></td>
</tr>
<tr>
<td>$C_\Phi e_k = \lambda_k e_k$</td>
<td>$C_X e_k = \lambda_k e_k$</td>
</tr>
</tbody>
</table>

Eigenelements	
$e_k(x)$	$e_k(s)$
x – space	s – time lag

- Colebrook (1978); Weare & Nasstrom (1982); Broomhead & King (1986; BK); Fraedrich (1986); Vautard & Ghil (1989; VG).
- BK + VG: Analogy between Mañé-Takens embedding and the Wiener-Khinchin theorem.

λ_k pairs \rightarrow oscillations

(nonlinear) sine + cosine pair
Singular Spectrum Analysis (SSA) – II

- Truncation of the expansion to the S leading EOFs ⇒ data-adaptive filter.
- Nearly equal eigenvalues ⇒ nonlinear, anharmonic oscillation.

Vautard & Ghil (1989: VG)
Physica, 35D, 395-424

Pairs \Rightarrow oscillations
(nonlinear) $sine + cosine$ pair
Stylized Facts of a Business Cycle – I

Need a more objective, quantitative description of the “typical business cycle.” To do so we use two complementary approaches:
1. synchronization methods from dynamical systems (“chaos”); and
2. Advanced methods of time series analysis (SSA and M-SSA)

9 variables:
gross domestic product (GDP), investment, consumption, employment rate (in %), price, total wage, imports, exports, and change in private inventories.

Groth, Ghil, Hallegatte and Dumas, submitted
Consider the local variance fraction $V_k(t)$ with $D = 9$, $M = 100$, and $A_k(t)$ the PCs:

$$V_k(t) = \frac{\sum_{k\in K} D M \ A_k(t)^2}{\sum_{k=1} A_k(t)^2}$$

The “signal” fraction is largest during the recessions.

The “noise” fraction is largest during the expansions.

Vertical shaded bars are NBER-defined recessions.
Conclusions and outlook:
a hierarchy of economic models and
data analysis methods

1. The highly idealized, aggregate NEDyM model exhibits fairly realistic, endogenous business cycles (EnBCs): period = 5–6 yr, sawtooth shape, good phasing of indices.
2. NEDyM displays a vulnerability paradox:
 - extreme-event consequences depend on the state of the economy;
 - they are more severe during an expansion than a recession.
3. This paradox is supported by
 - consequences of Izmit (Marmara) earthquake, 1999;
 - reconstruction process after the 2004 and 2005 hurricane seasons in Florida.
6. Need more detailed, regional and sectorial models: C. Colon, B. Coluzzi, M. G., S.H., and G. Weisbuch have used simplified, Boolean models to study the economy as a network of businesses (suppliers and clients, etc.).
7. Compare aggregate models with agent-based models (ABMs) and with the data, US + EU + global.
A few references

The deeper motivations of economic modeling

“Really, Karl! Can’t I mention the high price of kohlrabi without getting a manifesto?”
Reserve slides
Unfortunately, things aren’t all that easy!

What to do?

Try to achieve better interpretation of, and agreement between, models …

Natural variability introduces additional complexity into the anthropogenic climate change problem

The most common interpretation of observations and GCM simulations of climate change is still in terms of a scalar, linear Ordinary Differential Equation (ODE)

\[
c \frac{dT}{dt} = -kT + Q = \sum k_i - \text{feedbacks (+ve and -ve)}
\]

\[
Q = \sum Q_j - \text{sources & sinks}
\]

\[
Q_j = Q_j(t)
\]

Linear response to CO₂ vs. observed change in T

Hence, we need to consider instead a system of nonlinear Partial Differential Equations (PDEs), with parameters and multiplicative, as well as additive forcing (deterministic + stochastic)

\[
\frac{dX}{dt} = N(X, t, \mu, \beta)
\]
So what’s it gonna be like, by 2100?

<table>
<thead>
<tr>
<th>Phenomenon and direction of trend</th>
<th>Likelihood that trend occurred in late 20th century (typically post 1960)</th>
<th>Likelihood of a human contribution to observed trend</th>
<th>Likelihood of future trends based on projections for 21st century using SRES scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer and fewer cold days and nights over most land areas</td>
<td>Very likely<sup>a</sup></td>
<td>Likely<sup>d</sup></td>
<td>Virtually certain<sup>d</sup></td>
</tr>
<tr>
<td>Warmer and more frequent hot days and nights over most land areas</td>
<td>Very likely<sup>a</sup></td>
<td>Likely (nights)<sup>d</sup></td>
<td>Virtually certain<sup>d</sup></td>
</tr>
<tr>
<td>Warm spells/heat waves. Frequency increases over most land areas</td>
<td>Likely</td>
<td>More likely than not<sup>f</sup></td>
<td>Very likely</td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas</td>
<td>Likely</td>
<td>More likely than not<sup>f</sup></td>
<td>Very likely</td>
</tr>
<tr>
<td>Area affected by droughts increases</td>
<td>Likely in many regions since 1970s</td>
<td>More likely than not<sup>f</sup></td>
<td>Likely</td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely in some regions since 1970</td>
<td>More likely than not<sup>f</sup></td>
<td>Likely</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)<sup>g</sup></td>
<td>Likely</td>
<td>More likely than not<sup>th</sup></td>
<td>Likely<sup>i</sup></td>
</tr>
</tbody>
</table>

^a Assessment based on observed trends.

^d Includes both direct and indirect human influences.

^f Includes categories A1B, A2, B1, B2, and A1T.

^g Includes coronal mass ejections and solar proton events.
Earth System Science Overview, NASA Advisory Council, 1986

F. Bretherton's "horrendogram" of Earth System Science

CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries

Atmospheric Physics / Dynamics
- Cloudiness
- Radiation

Physical Climate System
- Energy
- Snow
- Terrestrial Surface Moisture / Energy Balance

Biogeophysical Cycles
- Marine Biogeochemistry
- Terrestrial Ecosystems

Biogeochemical Cycles
- Tropospheric Chemistry
- Cloud Processes
- Urban Boundary Layer

Deep-Sea Sediment Cores
- Land and Ice
- Radiocarbon / Isotopes
- Ice Cores

Solar System
- Insolation (solar radiation)

Impacts
- Human Activities

Volcanism
- Climate Change

Soil Development
- Ecosystems
- Terrestrial Ecosystems

Solar and Space Plasma
- Mineralogy
- Volcanism

N = Concentration

* = on timescale of hours to days
* = on timescale of months to seasons
p = flux

Global warming and its socio-economic impacts– II

Temperatures rise:
- What about impacts?
- How to adapt?

AR5 vs. AR4
A certain air of *déjà vu*: GHG “scenarios” have been replaced by “representative concentration pathways” (RCPs), more dire predictions, but the uncertainties remain.

Source: IPCC (2013), AR5, WGI, SPM
But deterministic chaos doesn’t explain all: there are many other sources of irregularity!

• The energy spectrum of the atmosphere and ocean is “full”: all space & time scales are active and they all contribute to forecasting uncertainties.

• Still, one can imagine that the longest & slowest scales contribute most to the longest-term forecasts.

• “One person’s signal is another person’s noise.”

After Nastrom & Gage (JAS, 1985)
Climate models (atmospheric & coupled): A classification

- **Temporal**
 - stationary, (quasi-)equilibrium
 - transient, climate variability

- **Space**
 - 0-D (dimension 0)
 - 1-D
 - vertical
 - latitudinal
 - 2-D
 - horizontal
 - meridional plane
 - 3-D, GCMs (General Circulation Model)
 - Simple and intermediate 2-D & 3-D models

- **Coupling**
 - Partial
 - unidirectional
 - asynchronous, hybrid
 - Full

⇒ **Hierarchy**: back-and-forth between the simplest and the most elaborate model, and between the models and the observational data
Multiple scales of motion: Space-time organization

- The most active scales lie along a diagonal in this space vs. time plot.
- Why this is so is far from clear as of now.
- We’ll deal with weather first, then climate.

N.B. A high-variability ridge lies close to the diagonal of the plot (cf. also Fraedrich & Böttger, 1978, JAS)

* LFV ≈ 10–100 days (intraseasonal)
The uncertainties might be intrinsic, rather than mere “tuning problems.”

If so, maybe stochastic structural stability could help!

Might fit in nicely with recent taste for “stochastic parameterizations.”

The DDS dream of structural stability (from Abraham & Marsden, 1978)
This theory is the counterpart for randomly forced dynamical systems (RDS) of the geometric theory of ordinary differential equations (ODEs). It allows one to treat stochastic differential equations (SDEs) — and more general systems driven by noise — as flows in (phase space) × (probability space).

\[\text{SDE} \sim \text{ODE}, \text{RDS} \sim \text{DDS}, \text{L. Arnold (1998)} \sim \text{V.I. Arnol’d (1983)} \]

Setting:

(i) A phase space \(X \). **Example:** \(\mathbb{R}^n \).

(ii) A probability space \((\Omega, \mathcal{F}, \mathbb{P})\). **Example:** The Wiener space \(\Omega = C_0(\mathbb{R}; \mathbb{R}^n) \) with Wiener measure \(\mathbb{P} \).

(iii) A model of the noise \(\theta(t) : \Omega \to \Omega \) that preserves the measure \(\mathbb{P} \), i.e. \(\theta(t)\mathbb{P} = \mathbb{P} \); \(\theta \) is called the driving system. **Example:** \(W(t, \theta(s)\omega) = W(t + s, \omega) - W(s, \omega) \); it starts the noise at \(s \) instead of \(t = 0 \).

(iv) A mapping \(\varphi : \mathbb{R} \times \Omega \times X \to X \) with the cocycle property. **Example:** The solution operator of an SDE.
This theory is the counterpart for randomly forced dynamical systems (RDS) of the *geometric theory* of ordinary differential equations (ODEs). It allows one to treat stochastic differential equations (SDEs) — and more general systems driven by noise — as flows in (phase space) \times (probability space).

SDE \sim ODE, RDS \sim DDS, L. Arnold (1998) \sim V.I. Arnol’d (1983).

Setting:

(i) A phase space X. **Example:** \mathbb{R}^n.

(ii) A probability space $(\Omega, \mathcal{F}, \mathbb{P})$. **Example:** The Wiener space $\Omega = C_0(\mathbb{R}; \mathbb{R}^n)$ with Wiener measure \mathbb{P}.

(iii) A model of the noise $\theta(t) : \Omega \to \Omega$ that preserves the measure \mathbb{P}, i.e. $\theta(t) \mathbb{P} = \mathbb{P}$; θ is called the driving system.
Example: $W(t, \theta(s)\omega) = W(t + s, \omega) - W(s, \omega)$; it starts the noise at s instead of $t = 0$.

(iv) A mapping $\varphi : \mathbb{R} \times \Omega \times X \to X$ with the cocycle property.
Example: The solution operator of an SDE.
\(\varphi \) is a random dynamical system (RDS)

\(\Theta(t)(x, \omega) = (\theta(t)\omega, \varphi(t, \omega)x) \) is a flow on the bundle
A random attractor $A(\omega)$ is both *invariant* and “pullback” *attracting*:

(a) **Invariant**: $\varphi(t, \omega)A(\omega) = A(\theta(t)\omega)$.

(b) **Attracting**: $\forall B \subset X, \lim_{t \to \infty} \text{dist}(\varphi(t, \theta(-t)\omega)B, A(\omega)) = 0 \text{ a.s.}$
Sample measures for an NDDE model of ENSO

The Galanti-Tziperman (GT) model (JAS, 1999)

\[
\frac{dT}{dt} = -\epsilon_T T(t) - M_0(T(t) - T_{\text{sub}}(h(t))),
\]

\[
h(t) = M_1 e^{-\epsilon_m(\tau_1+\tau_2)} h(t - \tau_1 - \tau_2) - M_2 \tau_1 e^{-\epsilon_m(\frac{\tau_1}{2}+\tau_2)} \mu(t - \tau_2 - \frac{\tau_1}{2}) T(t - \tau_2 - \frac{\tau_1}{2}) + M_3 \tau_2 e^{-\epsilon_m \frac{\tau_2}{2}} \mu(t - \frac{\tau_2}{2}) T(t - \frac{\tau_2}{2}).
\]

Neutral delay-differential equation (NDDE), derived from Cane-Zebiak and Jin-Neelin models for ENSO: \(T \) is East-basin SST and \(h \) is thermocline depth.

Seasonal forcing given by

\[
\mu(t) = 1 + \epsilon \cos(\omega t + \phi).
\]

The pullback attractor and its invariant measures were computed.

Figure shows the changes in the mean, 2\(^{nd}\) & 4\(^{th}\) moment of \(h(t) \), along with the Wasserstein distance \(d_{\text{W}} \), for changes of 0–5% in the delay parameter \(\tau_{K,0} \).

Note intervals of both smooth & rough dependence!
It was a wonderful encounter with some leading physicists and mathematicians, as well as with GFD & climate researchers, and with great students and post-docs. It taught me, as Erice had done in March 1981, how well organized the SIF and Italians in general can be. But most of all, Michèle & I found out we'd be parents soon.

Interdecadal oscillations and the warming trend in global temperature time series

M. Ghil & R. Vautard

THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis\(^1\) to analyse the time series of global surface air temperatures for the past 135 years\(^2\), allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon\(^3\). The interdecadal oscillations could be associated with changes in the extratropical ocean circulation\(^4\). The oscillatory components have combined (peak-to-peak) amplitudes of 0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr\(^{-1}\) will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.
How important are different sources of uncertainty?

- Varies, but typically no single source dominates.

Source: Met Office
<table>
<thead>
<tr>
<th>Deterministic predictions</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Courtesy Tim Palmer, 2009
Parameter dependence – I

It can be smooth or it can be rough:
Niño-3 SSTs from intermediate coupled model for ENSO (Jin, Neelin & Ghil, 1994, 1996)

Skewness & kurtosis of the SSTs: time series of 4000 years,

\[\Delta \delta = 3 \cdot 10^{-4} \]

\[\delta = 0.9557 \]

M. Chekroun (work in progress)
The time-dependent pullback attractor of the GT model supports an invariant measure \(\nu = \nu(t) \), whose density is plotted in 3-D perspective.

The plot is in delay coordinates \(h(t+1) \) vs. \(h(t) \) and the density is highly concentrated along 1-D filaments and, furthermore, exhibits sharp, near–0-D peaks on these filaments.

The Wasserstein distance \(d_W \) between one such configuration, at given parameter values, and another one, at a different set of values, is proportional to the work needed to move the total probability mass from one configuration to the other.

Climate sensitivity \(\gamma \) can be defined as

\[
\gamma = \frac{\partial d_W}{\partial \tau}
\]
The classical view of dynamical systems theory is:

positive Lyapunov exponent \Rightarrow trajectories diverge exponentially

But the presence of multiple regimes implies a much more structured behavior in phase space

Still, the probability distribution function (pdf), when calculated forward in time, is pretty smeared out

Global warming and “global weirding”

“CLIMATE STRANGE
FORGET GLOBAL WARMING—AND
GET READY for GLOBAL WEIRDING
BY BRYAN WALSH”

“The New Rule: For the next few (?) years, global warming will lead to
colder, more brutal winters.”

- Oh, thank you for the latest prediction from a science journalist — based
 on interesting but still rather tentative, & hotly debated, suggestions from
 a few media-loving (& vice-versa) researchers.

- And if this is so certain, why wasn’t it predicted by IPCC(*) and other models
 BEFORE it happened?

(*) Intergovernmental Panel on Climate Change

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc. Plaut, Ghil & Vautard (1995, *Science*)
Concluding remarks, I – RDS and RAs

Summary
• A change of paradigm from closed, autonomous systems to open, non-autonomous ones.
• Random attractors are (i) spectacular, (ii) useful, and (iii) just starting to be explored for climate applications.

Work in progress
• Study the effect of specific stochastic parametrizations on model robustness.
• Applications to intermediate models and GCMs.
• Implications for climate sensitivity.
• Implications for predictability?
Concluding remarks, II – Climate change & climate sensitivity

What do we know?
• It’s getting warmer.
• We do contribute to it.
• So we should act as best we know and can!

What do we know less well?
• By how much?
 – Is it getting warmer …
 – Do we contribute to it …
• How does the climate system (atmosphere, ocean, ice, etc.) really work?
• How does natural variability interact with anthropogenic forcing?

What to do?
• Better understand the system and its forcings.
• Explore the models’, and the system’s, robustness and sensitivity
 – stochastic structural and statistical stability!
 – linear response = response function + susceptibility function!!