Linking Overturning, Recirculation, and Melt in Glacial Fjords

Ken X. Zhao¹, Andrew L. Stewart¹, and James C. McWilliams¹

¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565.

Key Points:

• Simulations show face-wide glacial melt dominates the total melt due to its concentration at deeper depths vs. discharge plume-driven melt.
• Glacial melt in fjords is primarily driven by recirculation at depth for most fjord properties, which is in turn driven by overturning.
• Face-wide glacial melt drives a significant warm-water overturning and recirculation at depth, leading to a melt-circulation feedback.

Corresponding author: Ken X. Zhao, kzhao@atmos.ucla.edu
Abstract
Fjord circulation modulates the connection between marine-terminating glaciers and the ocean currents offshore. These fjords exhibit both overturning and horizontal recirculations, which are driven by water mass transformation at the head of the fjord via subglacial discharge plumes and distributed meltwater plumes. However, little is known about how various fjord characteristics influence the interaction between 3D fjord circulation and glacial melt. In this study, high-resolution numerical simulations of idealized glacial fjords demonstrate that recirculation strength controls melt, which feeds back on overturning and recirculation. The relationships between overturning, recirculation, and melt rate are well predicted by vorticity balance, reduced-order melt parameterizations, and empirical scaling arguments. These theories allow us to take into account the near-glacier horizontal velocities, which yield improved predictions of fjord overturning, recirculation, and glacial melt.

Plain Language Summary

Glacial fjords are long, narrow, and deep inlets that connect glaciers to the open ocean. These glacial fjords exist around the margins of Greenland, West Antarctica, Alaska, and other regions, and collectively contribute a significant source of ice discharge into the ocean. Over the past two decades, tidewater glaciers in Greenland have accelerated, which can lead to sea level rise, and there is growing evidence that this acceleration is caused by deep warm water currents that flow into the fjords from the open ocean. These warm water currents have the potential to melt the submarine sides of glaciers, causing them to retreat over time. The dynamics of warm water delivery to the glacier face, particularly its interaction with fjord circulation, are presently poorly understood. In this study, we use high-resolution, process-oriented simulations to understand fjord currents and how they vary with different fjord characteristics and lead to different rates of submarine melting of the glacier face. We find that submarine glacial melt can cause feedbacks by amplifying the strength of the ocean currents, which further increase glacial melt. These results are an important step towards understanding a critical process that may help us improve sea level rise predictions.

1 Introduction
Outflowing of marine-terminating glaciers at the margins of the Greenland Ice Sheet and Antarctic Ice Sheet has accelerated in recent years (van den Broeke et al., 2016). For the Greenland Ice Sheet, a major cause of accelerated ice discharge is postulated to be enhanced submarine melting from warming ocean currents that come into contact with the termini of tidewater glaciers (Wood et al., 2018; Cowton et al., 2018; P. R. Holland et al., 2008; Straneo & Heimbach, 2013).

Submarine melt at marine-terminating glaciers drives glacial retreat and also amplifies iceberg calving depending on the properties of the glacier and fjord (Slater et al., 2021; Wood et al., 2021; Morlighem et al., 2016; Chauché et al., 2014; Fried et al., 2018; Rignot et al., 2015; Wagner et al., 2016). The submarine melt rate consists of ambient face-wide melt and discharge plume-driven melt (Straneo & Cenedese, 2015; Jackson et al., 2020). Although subglacial discharge plumes have the potential to drive a melt rate of more than a meter per day in the glacial area near the plume (equivalent to a volumetric melt of $O(10^4)$ to $O(10^5)$ m3/day, assuming a fjord width of 5 km), it only occupies a small fraction of the glacial face (Cowton et al., 2015; Slater et al., 2018). By comparison, face-wide melting occurs along the entire glacial face as a result of either convection (Magorrian & Wells, 2016) or horizontal fjord circulation (Slater et al., 2018; Zhao et al., 2021), which are the two primary components of fjord circulation. Theoretical or modeled estimates of face-wide melt rates range widely, but are generally below 1 meter per day (and may be up to $O(10^6)$ m3/day of volumetric melt, based on an av-
erage glacial face area). Yet, only recently have studies considered the possibility that existing parameterizations of the ice-ocean boundary layer may be underestimating the contribution of face-wide melt (Jackson et al., 2020; Slater et al., 2018). The 3D fjord circulation has primarily been studied in the context of an estuary-like overturning circulation where warm and salty open-ocean water masses flow into the fjords at depth, and colder and fresher water masses flow out of the fjord at shallower depths (Stigebrandt, 1981; Farmer & Freeland, 2021; Inall & Gillibrand, 2010; Cottier et al., 2010). However, compared to most estuaries (Geyer & MacCready, 2014), deep glacial fjords in Greenland have relatively weak tidal influence and most of the vertical mixing is posited to occur near the glacial face (Straneo & Cenedese, 2015). The focus of previous 2D and 3D simulations of the shelf-to-fjord system has been to understand the sensitivity of glacial melt and the overturning circulation/fjord renewal to various fjord characteristics and atmospheric/oceanic drivers (e.g., Gladish et al. (2015), Sciascia et al. (2013), Xu et al. (2012), and Jackson et al. (2018)).

Along with the relative scarcity of ocean observations near marine-terminating glaciers, only recently has the horizontal circulation within fjords and their sensitivity to fjord and forcing parameters received attention in models (Zhao et al., 2019, 2021; Zhao, 2021), which has been suggested to have an influence on the face-wide melt rates (Slater et al., 2018; Jackson et al., 2020; Zhao et al., 2021; Carroll et al., 2017). In particular, Slater et al. (2018) uses high resolution modeling to show that lateral recirculation can enhance face-wide melt rates, and the current work seeks to build upon this through the development of a theory/parameterization for the role of horizontal circulation in fjords on glacial melt.

Existing melt parameterizations either do not take into account horizontal near-glacier velocities or model simulations (e.g., Sciascia et al. (2013), Xu et al. (2012)) do not resolve the horizontal flows necessary for accurate melt rate predictions (e.g., Cowton et al. (2015), Carroll et al. (2017)). To remedy this, bulk glacial melt parameterizations should ideally use either near-glacier horizontal velocities based on resolved circulations or use predictions of near-glacier horizontal velocities in terms of the fjord forcing, geometry, and stratification.

To better understand these processes, we conduct a process-oriented exploration of fjord parameter space using simulations that can finely resolve the near-glacier horizontal circulation using parameterizations for the convective ambient and discharge plume components. We support these simulations with simple dynamical theories of overturning circulation, horizontal recirculation in the fjord interior, and glacial melt rate. Using these results, we address a gap in understanding of how the two components of fjord circulation (the resolved horizontal circulation and the parameterized plume convection) and glacial melt co-interact. This has important implications for glacial retreat at the oceanic margins of ice sheets.

2 Fjord Model Setup

2.1 Model Configuration

To examine the interaction of fjord circulation and glacial melt, we use the Massachusetts Institute of Technology general circulation model (MITgcm, Marshall et al. (1997)) to solve the hydrostatic, Boussinesq primitive equations with a nonlinear equation of state (Jackett & McDougall, 1995) for a series of idealized fjord configurations. Our model uses an idealized geometric representation of a simple bathtub-like fjord-only domain with sloping side walls, a glacier face along its western boundary, and a Gaussian zonal sill centered at $x_S = 20$ km (see Fig. 1a). The model domain dimensions are $L \times W \times H = 25$ km $\times 6$ km $\times 800$ m. There is quadratic bottom drag with a coefficient of 2×10^{-3} and no surface forcing. The eastern boundary region is nudged to a
Figure 1. Reference simulation as specified in Section 2.2 showing (a) fjord geometry with two density interfaces $\sigma = 27.2$ (dark blue), 27.6 (red) kg/m3 and the eastern boundary temperature and salinity forcing; and (b), (c) contemporaneous snapshots of normalized vorticity at $z = -100$ m and $z = -600$ m, respectively. Velocity quivers are included in panel (c). Time-averaged profiles of (d) meridionally-averaged temperature, (f) meridionally-averaged salinity with (e, g) model/observation comparisons using Ilulissat Icefjord data (Gladish et al., 2015; Straneo & Cenedese, 2015), and (h) meridionally-integrated overturning streamfunction, and (i) vertically-integrated recirculation strength over the bottom 600 m. The contour spacings are 0.5 $^\circ$C, 0.5 psu, 3×10^3 m3/s, and 2×10^4 m3/s, in panels (d, f, h, i) respectively.
prescribed open ocean stratification in our reference experiment, based on near-fjord mouth
observations from Ilulissat Icefjord (Gladish et al., 2015; Straneo & Cenedese, 2015), and
includes a barotropic tidal velocity boundary condition in two of our perturbation ex-
periments. See supplemental materials S-1 for further information on the model setup.

On the western boundary, the model is forced by a subglacial discharge plume pa-
parameterization at the fjord midpoint ($x = 0, y = W/2$) and a face-wide melt plume
parameterization across the glacial face. Both types of plumes are parameterized using
the ICEPLUME package Cowton et al. (2015) with the subglacial discharge plume mod-
eeled as a point/cone plume (see Cowton et al. (2015)) and a face-wide ambient melt plume/sheet
plume (based on Jenkins (2011)). The slightly modified version of ICEPLUME used in
this study differs only from Cowton et al. (2015) by how the plume is injected into the
model domain, which permits higher horizontal resolution simulations. The melt plume
is driven by face-wide melting, which in turn is driven primarily by the horizontal ve-
locities. This is because the horizontal velocities in our simulations are significantly larger
than the parameterized vertical velocities within the melt plume. See supplemental ma-
terials S-1 for further discussion and details of both plume parameterizations.

The model horizontal resolution is 38 m and the vertical resolution is 8 m. We use
a Smagorinsky biharmonic horizontal viscosity and the K-Profile Parameterization (KPP)
of the vertical viscosity and diffusivity (Smagorinsky, 1963; Large et al., 1994), in ad-
dition to a background vertical diffusivity of 10^{-6} m2s$^{-1}$. We use an f-plane approx-
imation with a representative Coriolis parameter of $f = 1.31 \times 10^{-4}$ s$^{-1}$, corre-
ponding to latitudes in central Greenland. The model experiments are run for 1 year because
the fjord recirculation adjusts slowly and requires multiple months of spinup for some
of the test cases, and all results shown (unless otherwise specified) are time-averaged over
the last month.

2.2 A Reference Case

Fig. 1 illustrates the setup and circulation of our reference simulation. We impose
a subglacial discharge plume of $Q_0 = 100$ m3/s, as well as a face-wide melt plume. For
reference, most subglacial discharge plumes around Greenland range from 0 to 1000 m3/s
with most fjords at the weaker end of this range (Mankoff et al., 2020). The reference
case fjord dimensions are specified in Section 2.1 with a sill maximum at $z = -250$ m
depth and a stratification similar to Ilulissat fjord (e.g., Gladish et al., 2015; Straneo &
Cenedese, 2015) with no tidal forcing. The reference case parameters are shown in sup-
plemental materials Table S1.

The vorticity snapshots at $z = -100$ m and $z = -600$ m in Fig. 1b, c suggest
intense submesoscale variability based on the vorticity magnitude and structures gen-
erated near the sill overflow, boundary current, and plume outflow. At depth, the sill-
crossing overflow (located at $x = 18.5$ km) drives energetic small-scale variability and
vorticity. The overflow also feeds a cyclonic boundary current, which periodically becomes
unstable and sheds eddies into the interior (see supplemental materials Fig. S1). At shall-
ower depths, the plume outflow is the dominant source of variability and is greatest at
the neutral buoyancy depth (near $z = -100$ m). The intrafjord submesoscale variabil-
ity likely plays an important role in fjord stratification and mixing, circulation, and melt
rates, but a more complete exploration will be deferred to a future study.

To illustrate the simulated fjord state, in Fig. 1d-i we plot profiles of time- and meridionally-
averaged potential temperature and salinity, and compare them with observations from
Ilulissat Icefjord (Gladish et al., 2015; Straneo & Cenedese, 2015). The profiles of poten-
tial temperature and salinity at the ice face vs. the mouth of the fjord (panels (b) and
(d)) show the effect of the water mass transformation driven by the near-glacier plumes.
The modification of the inflowing water properties is more pronounced in the observa-
tions (Beaird et al., 2017) because we use a smaller discharge in our reference simulations than is observed in Illulissat Icefjord.

We quantify the fjord overturning circulation via the overturning streamfunction (Fig. 1h), which is calculated via

$$\psi(x, z) = \int_0^W \int_{z_{B}(x,y)}^z \bar{u} \, dz' \, dy'. \quad (1)$$

Here, \bar{u} is the time-averaged velocity in the x-direction (and defined to be 0 outside the bowl-shaped domain) and $z_{B}(x,y)$ is the bathymetric elevation. To quantify the horizontal recirculation, we first calculate the horizontal quasi-streamfunction

$$\Psi(x, y, z) = \int_0^y \bar{u} \, dy', \quad (2)$$

which is an approximation to the 3D streamfunction and is further discussed in supplemental materials S-2. We quantify the strength of the horizontal recirculation via the maximum value of the horizontal quasi-streamfunction in the region between the glacier face and the sill maximum:

$$R(z) = \max_{0 < x < 20 \text{ km}} \{\Psi(x, y, z)\}. \quad (3)$$

The vertically-integrated recirculation strength (over the bottom 600 m) is shown in Fig. 1i. The overturning and recirculation observed in our model results are idealized versions of the complex circulation observed in fjords with real geometries, but magnitudes are similar to those observed in nature (see Slater et al. (2018), Straneo and Cenedese (2015), and references therein).

3 Controls on Fjord Circulation and Glacial Melt

In order to understand the interaction of fjord circulation and glacial melt rate, we conduct a suite of experiments to test the effects of varying the glacial boundary layer parameterizations, discharge plume strength, geometric constraints, stratification, and tides. A complete list of the parameter ranges is shown in supplemental materials Table S1.

To understand the effect of the glacial face plumes on the fjord circulation and its feedback on melt rates, we compare four cases: the reference case and three different melt parameterizations, as listed in supplemental materials Table S1. The reference case (Q_{100Mp}) includes a subglacial discharge plume with $Q_0 = 100$ m3/s and a melt plume representing the face-wide melt (which for comparison, contributes a freshwater flux of approximately 40 m3/s). We additionally test three cases: (1) only the melt plume and no discharge (Q_0Mp), (2) a boundary layer melt parameterization and no discharge (Q_0MBL), using the 3-equation thermodynamics with no melt plume, based on Hellmer and Olbers (1989)), and (3) a discharge plume with a boundary layer melt parameterization (Q_{100MBL}).

In these cases, the subscript for Q denotes the discharge rate (in m3/s) used in the parameterized discharge plume. Mp denotes that the melt plume parameterization is used, while MBL denotes that the melt plume parameterization is turned off but that the 3-equation melt parameterization is still turned on such that horizontal velocities can still drive melting. The submarine melt rate used in these parameterization is proportional to the velocity magnitude ($\sqrt{v^2 + w^2}$). The horizontal velocity v uses the resolved near-glacier velocity. The vertical velocity w uses the parameterized vertical plume (discharge or ambient) velocity when the parameterization is active and the resolved vertical flow field when the plume parameterization is not active (see Section 4.3 for further details).

Fig. 2 shows how the near-glacier meridionally-integrated overturning streamfunction (using ψ from Eq. (1) and zonally-averaging over the near-glacier region, $0 < x < 20$ km)
5 km), recirculation strength (R, using Eq. (2)), and meridionally-averaged melt rate (M) vary for each of these four cases. The overturning, recirculation, and melt rate are comparatively negligible for the boundary layer-only case $Q_0 M_{BL}$ because it does not include entrainment into the melt plume, which drives most of the overturning in the $Q_0 M_P$ case. The overturning circulation of the $Q_0 M_P$ case peaks at a depth of -500 m, while the $Q_{100} M_{BL}$ case peaks at the discharge plume neutral buoyancy depth of -100 m. The two plumes are approximately additive, i.e., the melt plume-only and discharge plume-only experiments can be added together to approximately obtain the overturning circulation in the reference case, which utilizes both plumes. In panels (d)-(f), we show the time-averaged melt rates at the glacial face for three of these cases. This highlights the distinction between the deeper horizontal circulation-dominated face-wide melt (in the reference and melt plume only cases) and the shallower discharge-driven melting (in the reference and discharge plume only cases) in addition to the strong melting within the narrow discharge plume itself. The face-wide melt distributed is weaker but covers a larger area and is visibly influenced by the horizontal circulation (with melt regions extending to the northern fjord wall at the bottom, and to the southern fjord wall at mid-depth).

Fig. 2 suggests that there is an approximate correlation between overturning, recirculation, and melt rate with depth, which we will discuss further in Section 4. Contrary to expectations that discharge plumes (when active) drive a majority of the melt (Straneo & Cenedese, 2015), the melt plume case shows a total melt rate that is approximately 70% of the reference case melt rate. However, the rate of undercutting (defined here as the average melt rate over the bottom 200 m) for the two cases are nearly equal because although the overturning is weaker for this case, it is located deeper in the water column, where the warmer water recirculation drives a significant percentage of the melt rate. By comparison, the discharge plume-only case only accounts for 60% of the reference case melt rate because the overturning is located at shallower depths. Note also that most of the discharge plume-driven melt occurs over the face-wide area instead of the area where the plume is in contact with the glacial face (see Fig. 2c).

The sensitivity of the overturning, recirculation, and melt rates to discharge strength, sill height, fjord depth and width, stratification, and tides are also important and similarly show a correlation between vertical profiles of overturning, recirculation, and melt rate (see supplemental materials Figs. S2-S6 for parameter sensitivity cross-section plots of temperature, salinity, overturning, recirculation, and melt rates). An important takeaway is that increasing the discharge strength leads to diminishing increases in circulation strength and melt, i.e., increasing discharge has a strong effect for weaker discharge rates, but a significantly weaker effect on melt rates beyond the discharge rate of $Q = 100$ m3/s in the reference case. Increasing the discharge by an extreme factor of 10 (the $Q_{1000} M_P$ case) relative to the reference case increases the overturning by a factor of 2.5, but this only increases the melt rate by 30%. The reason for the diminished importance of discharge-driven melt is that increases in discharge primarily amplifies the shallow overturning and recirculation, which has a smaller impact on the overall melt rate due to the colder waters present at these depths.

4 Linking Fjord Renewal, Horizontal Circulation, and Melt

In order to understand the sensitivity of glacial melt rates to fjord parameters, we extend previous theories (Zhao et al., 2021) to relate the fjord overturning, recirculation, and melt to the parameters studied in Section 3.

4.1 Overturning Theory

Our theory for the overturning circulation uses the sum of the discharge plume entrainment and the melt plume entrainment (Morton et al., 1956; Cowton et al., 2015;
Figure 2. Profiles of (a) meridionally-integrated overturning streamfunction, (b) recirculation strength (as defined in Section 2.2), and (c) meridionally-averaged melt rate for the reference case ($Q_{100}M_p$), a melt plume only case (Q_0M_p), a boundary layer melt parameterization case with no discharge (Q_0M_{BL}), and subglacial discharge only case with a boundary layer melt parameterization ($Q_{100}M_{BL}$). (d)-(f) Time-averaged melt rates (m/day) at the glacial face for the reference, melt plume only, and discharge only case (with boundary layer melt).
Straneo & Cenedese, 2015):

\[
\psi(x = 0, z) \approx \beta_p B^{1/3}(z - z_B)^{5/3} + \beta_m W \left(\frac{\rho_w g_0}{\rho_i} \right)^{1/3} M_0^{1/3}(z - z_B^{4/3}).
\] (4)

Here, \(\beta_p = (6/5)(9/5)^{1/3} \pi^{1/3} \epsilon^{4/3} \) (entrainment factor for a half-cone plume) and \(\beta_m = (3/4)(1/5)^{1/3} \epsilon^{2/3} \) (entrainment factor for a sheet plume), which depend on an experimentally-derived entrainment coefficient, \(\epsilon = 0.13 \) (Linden, 2000). Additionally, \(M_0 \) is the melt rate (assumed to be constant with depth in the uniform density region) and \(\rho_w \) and \(\rho_i \) are the density of fresh water and ice, respectively. The discharge plume buoyancy flux \(B(z) = g'Q \) varies with depth, but assuming an approximately uniform background density \(\rho \) below the neutral buoyancy depth yields \(B \approx B_0 = g'_0 Q_0 \), where \(B_0 \) is the buoyancy flux at the plume source, \(Q_0 \) is the subglacial discharge rate, and the reduced gravity is \(g'_0 = g(\rho - \rho_w)/\rho \). The neutral buoyancy depth of the discharge plume is primarily dependent on background stratification and weakly sensitive to the water mass transformation rates.

The melt plume buoyancy flux (last term in Eq. (4)) uses a simplified depth-constant melt rate \(M_0 \), but this can be extended to a depth-varying melt rate \(M(z) \) and both the discharge plume and melt plume buoyancy flux contributions may be extended to depth-varying background density and solved numerically (see supplemental materials S-1 for further details). Our simulations suggest that the depth variation of \(M(z) \) is proportional to the time-mean near-glacier along-face horizontal velocity \(\tau(z) \) via the relationship \(M(z) \approx k_M \tau(z) \) for a proportionality constant \(k_M \approx 0.035 \), i.e., that we may essentially ignore the vertical velocities outside of the discharge plume parameterization, which is further discussed in Section 4.4. This relationship suggests a potential feedback between melt, overturning, and horizontal recirculation.

4.2 Recirculation Theory

In order to understand the relationship between overturning and recirculation, we apply the scaling arguments from Zhao et al. (2021) based on the vorticity balance. This shows that below the neutral buoyancy depth (which can be predicted using plume theory; see supplemental materials S-1), vorticity generated by water mass transformation due to the glacial boundary conditions (both the melt plume and discharge plume) is primarily balanced by the curl of bottom drag (as evidenced by supplemental materials Fig. S7).

Based on an approximate balance between these two vorticity terms, we derive the following scaling relationship between the overturning streamfunction and recirculation

\[
\langle \psi(x, z) \rangle_x \approx \frac{C_F C_d}{L_x^2 H_b^2} \left(\int_{-H}^{z} R(z') \, dz' \right)^2.
\] (5)

Here, \(C_F = 2(W + x_S) \) is the circumference of the fjord recirculation region, \(C_d = 2 \times 10^{-3} \) is the bottom drag coefficient, and the boundary current width \(L_r \) is empirically approximated by \(L_r \sim (L_d + W/2)/2 \) for a deformation radius \(L_d \). We use the zonal average of the overturning streamfunction \(\langle \psi(x, z) \rangle_x \) over the near-plume region \(0 < x < L_r \) as a numerical approximation to the plume-driven overturning \(\psi(x = 0, z) \) from Eq. (4). The water column thickness of the recirculation region below the neutral depth is \(H_b = H - |z_N| \), where \(z_N \) is the neutral depth and \(H \) is the depth of the fjord. See Zhao et al. (2021) for a more detailed discussion of this scaling theory.

4.3 Melt Rate Theory

In order to extend our predictions of recirculation to total melt rate, we apply another scaling approximation from Zhao et al. (2021) that relates the time-mean horizontal tangential velocity \(\tau(z) \) at the glacial face to the horizontal recirculation, expressed
as $\tau(z) \approx 2R(z)/(L_r H_b)$. Assuming that the melt rates are primarily driven by horizontal velocities, which is true for the majority of the glacial surface area, the 3-equation thermodynamics (using e.g., Hellmer and Olbers (1989), D. M. Holland and Jenkins (1999) and assuming ice temperatures that are close to boundary layer ocean temperatures) allows us to simplify this relationship to a linear melt rate $M(z)$ (in m/s) that is approximately proportional to $\tau(z)$ (and thus, $R(z)$),

$$M(z) = \frac{c_w(T_p - T_b)}{L_i} C_d^{1/2} \Gamma \sqrt{u^2 + w^2} \approx \frac{c_w(T_p - T_b)}{L_i} C_d^{1/2} \Gamma_T |\tau| \equiv k_M$$

where $L_i = 3.35 \times 10^5$ J kg$^{-1}$ is the latent heat of fusion of ice, $c_i = 2 \times 10^4$ J kg$^{-1}$ K$^{-1}$ is the specific heat capacity of ice, $c_w = 3.974 \times 10^3$ J kg$^{-1}$ K$^{-1}$ is the specific heat capacity of water, $C_d = 2 \times 10^{-3}$ is the bottom drag coefficient, $\Gamma_T = 2.2 \times 10^{-2}$ is the thermal transfer constant (corresponding to a thermal Stanton number $C_d^{1/2} \Gamma_T = 10^{-3}$), and T_b, T_p, T_i are the boundary layer, plume, and ice temperature, respectively.

For further discussion on this melt rate approximation, see supplemental materials S-4.

4.4 Summary of Theories

We can rewrite the relationships in Eqs. (4)-(6) and the plume theory (in supplemental materials S-1) as a priori predictions for the bulk overturning, recirculation, and melt rate explicitly in terms of the subglacial discharge, fjord width and depth, stratification, and near-glacier horizontal velocity.

The bulk overturning strength prediction (i.e., the overturning streamfunction in Eq. (4)) evaluated at the neutral buoyancy depth z_N can be expressed as

$$\psi(z_N) \approx \beta_p \left(g_i Q_0 \right)^{1/3} (z_N - z_B)^{5/3} + \beta_m W \left(\frac{\rho_w g_0}{\rho_b} \right)^{1/3} \left(k_M |\tau| \right)^{1/3} (z_N - z_B)^{4/3}.$$ (7)

Fig. 3a and 3b show the predicted vs. simulation-diagnosed values of the neutral buoyancy depth based on plume theory and the overturning strength, respectively. These two comparisons show that over the range of parameters, the neutral buoyancy depth is well-approximated by plume theory (see e.g., Turner (1979)), with a squared correlation coefficient of 0.92; similarly, overturning strength is well-approximated by Eq. (7), with a squared correlation coefficient of 0.89.

Using Eq. (5) and (7), we can express the depth-averaged recirculation below the neutral buoyancy depth in terms of the bulk overturning strength

$$\langle R \rangle_z \approx \left(\frac{\psi(z_N) \langle L_r^2 \rangle}{C_F C_d} \right)^{1/2},$$ (8)

or less accurately (as was used in the melt rate theory in Eq. (6)), the depth-averaged along-face zonal velocity

$$\langle R \rangle_z \approx L_r (H + z_N) |\tau|_z/2.$$ (9)

We note that equating the approximations in Eq. (8) and (9) allows us to relate the bulk overturning to the depth-averaged near-glacier along-face velocity,

$$|\tau|_z \approx \frac{2 \psi(z_N)}{C_F C_d (H + z_N)},$$ (10)

thereby removing the dependence of these theories on $|\tau|_z$, which is an essential (albeit less accurate) step to making the melt theory fully predictive i.e., without requiring a priori knowledge of the along-glacier velocity.
Figure 3. Simulation-diagnosed vs. theoretical predictions for (a) the neutral buoyancy depth based on plume theory, (b) the overturning circulation based on plume theory (Eq. (7)), (c) the depth-averaged recirculation based on the bulk overturning strength (Eq. (8)), (d) the overall glacial melt rate based on the recirculation theory (Eq. (11)), and (e) the simulation-diagnosed vs. theoretical predictions for the overall glacial melt rate based on the overturning and recirculation theory (Eqs. (11) and (10)).
Fig. 3c shows a comparison between the predicted depth-averaged recirculation below the neutral buoyancy depth using Eq. (8) and the corresponding simulation-diagnosed recirculation using Eq. (2). The recirculation above the neutral buoyancy depth is not included since vorticity advection primarily balances water mass transformation above this depth and the assumptions used for the scaling arguments used to derive Eqs. (5) and (8) no longer apply. Additionally, the melt rates in this region only account for a small percentage of the overall melt rate since the outflowing glacially-modified water masses are much colder. However, the recirculation at depths between the sill maximum and the neutral buoyancy depth are taken into account in Eqs. (5) and (8). Fig. 3c shows that over the range of parameters, recirculation varies over a large range, but is well-approximated by this simple scaling argument, with a squared correlation coefficient of 0.89.

Finally, the depth-averaged melt rate can be expressed as

\[\langle M \rangle_z \approx k_M \langle \tau \rangle_z. \] (11)

Fig. 3d shows a comparison between the predicted depth-averaged melt rate calculated from Eq. (11) multiplied by the glacial surface area and the corresponding value diagnosed from the simulation by integrating the melt rate over the entire glacial face. This shows that over the range of parameters, melt rate varies significantly, but is relatively well-approximated by this simple scaling argument. Although the prediction of total melt rate is less accurate (with a squared correlation coefficient of 0.85) than the predicted recirculation, this is likely because the melt rate theory requires additional approximations and assumptions. The melt rate can also be (less accurately) related to the bulk overturning strength or depth-averaged recirculation using Eqs. (10) and (9), respectively, to remove the dependence on the the near-glacier along-face velocity. The fully predictive theory for the total melt rate in terms of the overturning streamfunction by substituting Eq. (10) in Eq. (11) is compared with the simulation diagnosed melt rate in Fig. 3e (which has a squared correlation coefficient of 0.72).

4.5 Melt-Circulation Feedbacks

Eqs. (9)-(11) imply a feedback between melt, overturning strength and neutral buoyancy depth, and recirculation. In particular, Eqs. (9) and (11) express an approximate proportionality in any perturbations to melt rate and recirculation. The role of the feedback can be diagnosed from our simulation results by comparing the horizontal velocity field from the discharge-only case \((Q_{100M_{BL}})\) without the outflowing freshwater/heat fluxes in the melt rate parameterization (in order to suppress the melt-circulation feedback; not shown). We find that the melt rate profile of the discharge plume with the suppressed feedback is nearly identical to the discharge-only simulation (purple line in Fig. 2a-c). Therefore, the difference between the blue (full melt-circulation feedback) and the purple lines in Fig. 2a-c represents the strength of the melt-circulation feedback, which is concentrated below \(z = -400 \text{m}\).

As a result of this feedback, in our simulations and other scenarios with a distinct pycnocline, there is an equilibrium point in melt, recirculation, overturning, and neutral buoyancy depth which occurs at \(z_N\) approximately equal to the pycnocline depth. The neutral buoyancy depth term in Eq. (10) determines this equilibrium point since the feedback between melt and horizontal circulation is positive for plume neutral buoyancy depth deeper than the pycnocline depth and negative for plume neutral buoyancy depth shallower than the pycnocline depth. Therefore, we predict both positive and negative feedback regimes and an equilibrium for melt, recirculation, and overturning based on the ambient melt plume neutral buoyancy depth asymptotically approaching the background pycnocline. We should note however, that the plume-driven overturning is likely to strongly influence the background stratification and pycnocline depth over time in real fjord systems and there may be multiple equilibria for a more complex background stratification.
At the equilibrium state (or assuming a slowly-changing pseudo-equilibrium), we can use the functional dependency to predict and assess the sensitivity of melt rate, recirculation, and overturning to any of the input parameters (temperature, salinity, stratification, deformation radius, fjord depth, width, circumference, neutral buoyancy depth, Coriolis parameter, drag coefficient, discharge rate, etc.) by using Eqs. (7)-(11). If there is a mismatch between these relationships, it is indicative that the horizontal fjord circulation is not in equilibrium or that the theoretical assumptions are invalid for those parameters.

5 Discussion and Conclusion

In this study, we use a high-resolution idealized model (see Section 2) to analyze the sensitivity of glacial melt to fjord circulation (in Section 3) and address an important gap in scientific understanding: how fjord circulation and glacial melt co-influence each other and how to predict their bulk values as a function of fjord parameters. To achieve this, we extended previous theories (in Section 4) to predict the overturning, recirculation, and melt rates as functions of the model fjord parameters. These relationships are summarized in Eqs. (7)-(11), which explicitly express the sensitivity of the circulation and melt to each of the fjord parameters and illustrate the melt-circulation feedback, using the near-glacier velocity as a common link.

We found that a majority of the glacial melt occurs over the entire glacial front, instead of being localized to the discharge plume. For the highest discharge case (Q_{1000M_P}), the discharge plume region accounts for only 26% of the overall melt (and only 18% for the reference case) even though it increases the peak overturning strength by a factor of 2.5, because it confines this overturning to a narrow depth range near the neutral buoyancy depth. Most of the parameter variations we studied had a significant impact on the overall melt rate (see supplemental materials Fig. S6 for a figure showing the sensitivity of glacial melt distributions to fjord characteristics). These variations in melt can be theoretically related to the recirculation and overturning circulation, which in turn have two drivers: a face-wide melt plume and a discharge plume.

The discharge plume drives a shallower overturning than the face-wide melt plume and, therefore, the face-wide melt plays a significantly larger role in glacial melt because it provides a greater proportion of the deep overturning. In this deep overturning circulation, warm water masses flow toward the glacial face at a range of depths primarily in the deeper half of the fjord, and flows away in the upper half (see the Q_{0M_P} case in Fig. 2a). Our results show that over most of the fjord parameter range studied, the deep overturning within fjords is primarily driven by melt, and the overall melt is primarily driven by recirculation at depth, which is correlated with the deep overturning circulation. This glacial melt seems to be concentrated at depth due to the warm water available at these depths, where the stratification is weaker. Additionally, the warm-water renewal in the deeper waters of the fjord is more strongly controlled by face-wide melt compared to the subglacial discharge plume. This potentially has implications that fjords with weak subglacial discharge year-round or in wintertime conditions can still have substantial melt rates as long as warm water is present within the fjord. There is observational evidence that suggests this may occur in some fjords (Wood et al., 2018), but more wintertime glacial melt rate observations are needed to confirm this phenomenon. In addition, we find that the fjord circulation (specifically the horizontal component of circulation) takes multiple months to spin up for most of the simulations conducted. Therefore, this implies that realistic fjord systems (where subglacial discharge plumes are only energetic for a few months in summer) may have a horizontal circulation that is only be partially spun up during the summer before it begins to spin down.

Recent studies have shown that unvalidated coefficients in the melt parameterization likely contribute to a mismatch between melt rates from observations, which are of-
ten an order or magnitude higher than the theoretical and modeling results (Sutherland et al. (2019), Jackson et al. (2020)). We believe this mismatch likely involves the boundary layer parameterizations near the melt and discharge plumes, which are likely to have much larger deviations from the commonly used values for these coefficients (e.g., drag coefficient \(C_d = 2 \times 10^{-3} \) at the ice face, and the thermal transfer constant \(\Gamma_T = 2.2 \times 10^{-2} \)) since the boundary layer widths are often at smaller scales, resulting in sharper gradients than the horizontal shear boundary of the lateral recirculation. However, the possible range of variation in these empirical coefficients for the horizontal circulation may still significantly change the melt rates; a doubling of \(C_d \) would result in 41% increased overall melt and a doubling of \(\Gamma_T \) would result in a doubling of overall melt rate. In addition, the feedbacks discussed in Section 4.5 may play a role if the horizontal circulation is not in equilibrium (amplifying its effect for a fjord recirculation that is spinning up and suppressing this effect for a recirculation that is spinning down). Therefore, observations are needed to independently assess the boundary layer coefficients/parameterizations for the larger-scale horizontal recirculation and the smaller scale melt plume and discharge plume-adjacent boundary layers. There are numerous caveats in this study due to the limitations of our simple model configuration such as atmospheric and iceberg forcing (Enderlin et al., 2016; Spall et al., 2017), which are further discussed in supplemental materials S-5.

Following this study, there are a number of open questions that require further attention. Additional work is needed to investigate the submesoscale phenomenology and the distribution of mixing within the fjord. Another future avenue is to investigate boundary layer parameterizations at the glacial face and the interaction of submesoscale-microscale dynamics. A final avenue is to investigate the interaction between circulation and melt in more realistic regional models and the co-interaction of multiple neighboring fjords.

Acknowledgments

This material is based in part upon work supported by the NASA FINESST Fellowship under Grant 80NSSC20K1636 and the National Science Foundation under Grant OCE-1751386. This work used the Extreme Science and Engineering Discovery Environment (XSEDE, Towns et al. (2014)), which is supported by National Science Foundation grant number ACI-1548562.

6 Open Research

The MITgcm model configuration, test case, and modified plume parameterization (a slightly modified version of Cowton et al. (2015)) is available at: doi.org/10.5281/zenodo.5214142.

References

Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrom, A. P., Colgan, W., Kondo, K.,

