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Abstract

The assimilation problem for the coupled ocean-atmosphere system in the tropical
Pacific is investigated using an advanced sequential estimator, the extended Kalman filter
(EKF). The intermediate coupled model used in this study consists of an upper-ocean model
and a steady-state atmospheric response to it. Model errors arise from the uncertainty in
atmospheric wind stress. Data assimilation is applied in this idealized context to produce
a time-continuous, dynamically consistent description of the model’s El Nifio/Southern
Oscillation, based on incomplete and inaccurate observations. This study has two parts:
Part I (the present paper) deals with state estimation for the coupled system, assuming that
model parameters are correct, while Part II deals with simultaneous state and parameter
estimation.

The dynamical structure of forecast errors is estimated sequentially using a linearized
Kalman filter and compared with that of an uncoupled ocean model. The coupling produces
large changes in the structure of the error-correlation field. For example, error correlations
with opposite signs in the western and eastern part of the model basin are caused by
wind-stress feedbacks.

The full EKF method is used to assimilate various model-generated synthetic oceanic
data sets into the coupled model in an identical-twin framework. The assimilated data sets
include the sea surface temperature and a combination of wave velocities and thermocline
depth anomaly. With the EKF, the model’s forecast-assimilation cycle is able to estimate
correctly the phase and amplitude of the basic ENSO oscillation while using very few
observations. This includes a set of observations that only cover a single meridional section

of the ocean, preferably in the eastern basin.



1. Introduction and motivation
a. Background

Interannual variability in the tropics is dominated by the El Nifo/Southern Oscillation
phenomenon (ENSO) (see Neelin et al., 1998, for a review). Models of various degrees
of complexity are capturing different aspects of interannual variability in the tropics with
increasing success (see Latif et al., 1998, for a review).

Consistence of the initial state with a coupled ocean-atmosphere model can result in
smaller spin-up errors and useful forecast skill over longer lead times. Data assimilation
with a fully coupled system is gaining therefore attention (Hao, 1994; Hao and Ghil, 1995).
Recently, Chen et al. (1998, 1999) showed that the skill of the Lamont model (Cane et al.,
1986; Zebiak and Cane, 1987) can be considerably improved by assimilating better wind field
data (NSCAT satellite-derived winds instead of Florida State University observed winds), as
well as sea level data from Tropical Pacific tide gauges into the coupled model. Furthermore,
to obtain a better initial state for an El Nino forecast, one should use all the observations
available—from both ocean and atmosphere—especially those about the upper tropical ocean
(Hao and Ghil, 1994; Miller et al., 1995).

Here we present a data assimilation study with an intermediate coupled model using
the extended Kalman filter (EKF). The main advantage of using the EKF is that it gives
explicitly the evolution of forecast-error covariances, while the major difficulties in applying
it are its computational cost and the need to specify the model-error covariance matrix Q.

Recent progress in data assimilation for ocean models has been reviewed by Anderson

et al. (1996). Cane et al. (1996) studied data assimilation using the Kalman filter via a



reduced state space approach, to deal with the issues of computational cost and sparse data
coverage. Fukumori et al. (1999) evaluated the feasibility and accuracy of assimilating
satellite altimetry data into a global ocean general circulation model, using an approximate
Kalman filter and smoother; following the approach of Fukumori and Malanotte-Rizzoli
(1995), they computed the time-independent asymptotic limit of the forecast-error covariance
P! on a reduced state space while carrying the model on the full grid. Verron et al. (1999)
assimilated satellite data into a primitive-equation model with the EKF on a reduced state
space. They found that this EKF was efficient in transferring the information from the
surface-height observations to the deep ocean.

In this study, we compute the Kalman gain on the full space of the coupled model
and conduct several “identical twin” experiments. Our intention here is to explore ENSO
data assimilation using EKF on a simple enough yet fully coupled nonlinear model. By
understanding the details of how EKF works and the way observational information is
propagated in this intermediate coupled model, we hope to gain insight into the workings of
the EKF when applied to more complicated models. In Part II of this paper we extend the

approach to the problem of parameter estimation.

b. Qutline of the present paper

Part T of this two-part paper has three main objectives. The first one, stated in the
previous paragraph, is to gain insight into the workings of an EKF approach for the coupled
ocean-atmosphere system in the tropics. Second, we examine how error propagation differs
between a fully coupled model and an uncoupled ocean model driven by wind stress. Third,

we study the optimal placement of observations in the coupled case.



The present study uses synthetic data. Such studies are worthwhile supplements to more
practically oriented ones that use real data, in that the true-state history and model error
statistics are known and can be compared easily with the results of the assimilation. Many
studies have been carried out using real observations for uncoupled tropical-ocean models, as
was the case in the past for atmospheric models (e.g., Ghil and Malanotte-Rizzoli, 1991).
Some studies addressing ENSO have used real data, advanced data assimilation methods,
and complete ocean models, but prescribed winds (e.g., Behringer et al., 1998; Ngodock et
al., 2000; Verron et al., 1999; Fukumori et al., 1999). Simple data assimilation methodologies
have been applied with intermediate coupled models to assimilate real data (e.g., Chen et al.,
1998, 1999).

Studies with advanced data assimilation systems and intermediate coupled models that
have used real data, while valuable, are still at a fairly preliminary stage (Bennett et al., 1998,
2000; Lee et al., 2000). For example, Lee et al. (2000) used an adjoint method to assimilate
monthly-mean data of sea-surface heights and temperatures, as well as wind stress, for
September 1996 to January 1998. The method was applied to sliding six-month intervals of
data, from September 1996 to July 1997, in an intermediate coupled model with a statistical
diagnostic atmosphere component. Forecasts were issued from the last month of each such
window and compared with the actual evolution of the system, based on assimilation results
valid at the appropriate epoch. These authors found that the intermediate coupled model
has a reasonable skill in reproducing observed interannual variability of SST and sea level
during the 1997-98 El Nino.

In the present study, wind-stress error is considered to be the sole model deficiency.

As the tropical oceans are largely wind-driven (Gill, 1980; Philander, 1990), errors in the



wind stress have a great impact on the simulated ocean circulation (Leetmaa and Ji, 1989;
Sheinbaum and Anderson, 1990; Fu et al., 1993). Hao and Ghil (1994) and Miller et al.
(1995) have shown that, in the absence of ocean-atmosphere feedback, oceanic data can
compensate for errors in the wind stress. Even though an atmospheric component is included
in a coupled ocean-atmosphere model, wind-stress error can still be present and produce
large simulation errors, since higher-frequency variability dominates in the atmosphere than
in the oceans. The profound effect of observed wind-stress errors on the prediction skill of a
coupled model has been noticed by Graham et al. (1992).

We first present the dynamical structure of the forecast errors due to the wind-stress
error in our coupled model, estimated with a linearized Kalman filter (LKF) scheme. The
role of ocean-atmosphere coupling process in the propagation of model errors is investigated
by comparing the results for the coupled case with those for the uncoupled one.

We then present the results of data assimilation using the extended Kalman filter
(EKF). The most favorable places to measure the oceanic currents or sea surface temperature
(SST) for recovering the ENSO cycle are examined by comparing the impact of assimilating
observations at different longitudes.

Linear and nonlinear investigations of ENSO dynamics show that distinct parameter
values can modify the coupled model’s behavior, both quantitatively and qualitatively (Neelin
el al., 1998). One way to improve our model and its forecast skill is to estimate the correct
value of its parameters from observations, at the same time as estimating the model state.
This estimation is carried out with an extension of the EKF scheme, and relevant results are
reported in Part II of this study.

The structure of the present paper (Part I of this study) is as follows: In section 2, we



introduce the coupled ocean-atmosphere model used in the study. Further model details
appear in Appendix A. In section 3, data assimilation methods are briefly reviewed, and two
extensions of the Kalman filter to nonlinear problems, the LKF and EKF, are presented.
The model-error covariance is constructed from wind-stress errors, with details presented
in Appendix B. Section 4 contains the estimation of the forecast-error structure by the
LKF experiments. Model-state estimation studies for the coupled model with the EKF and

different data sources are reported in section 5. Concluding remarks appear in section 6.

2. Model solutions

We use the intermediate coupled model of Jin and Neelin (1993) and Neelin and Jin
(1993) (jointly referred to as JN hereafter). The details of this coupled ocean-atmosphere
model are described in Appendix A. This model is essentially a further idealization of the
model of Zebiak and Cane (1987). The major simplification is to treat explicitly only
the zonal dependence of sea surface temperature (SST) over an equatorial strip, with the
meridional structure of the associated atmospheric forcing specified.

This coupled model presents two different kinds of ENSO oscillation, of the delayed-
oscillator and westward-propagating type. The nature of the oscillation depends on the
values of two key parameters, namely the relative coupling coefficient 1 and the surface-layer
coefficient &, (JN). In this study, we choose &5 to be 0, and g to be 0.76. These parameter
values correspond to the delayed-oscillator regime of the model. The model parameters are
given in Table 1.

The meridional structure of the mean currents in the upper layer of the ocean is

projected onto the Hermite functions and truncated at a limited number (14 here). The



coupled model thus boils down to a spatially one-dimensional system of evolution equations
in the zonal direction x and time ¢. The amplitude for the Kelvin wave is gg, while ¢, for
n = 2,4,...,14 are the amplitudes of the first seven Rossby waves.

We use a staggered grid, with ocean wave coefficients ¢,,n = 0,2,4, ..., 14, carried at
full grid points, and SST carried at half grid points. The total length of the ocean basin is
150° (from 130°E to 80°W), with a grid spacing of 6.25°. The grid points in the z—direction
are numbered from 1 to 25, going from the basin’s western to its eastern boundary, and
used in identifying the location of observing sections. The coupled system so discretized has
(1 4+ 8) %24 = 216 degrees of freedom. The time step is 6 hours (see Table 1).

To illustrate the impact of the ocean-to-atmosphere coupling feedback, an uncoupled
ocean model otherwise similar to the coupled one is constructed. The former displays the
same time evolution as the latter when starting from the same initial state and forced with
the appropriate wind stress, recorded from the coupled control run. The wind stress used in
the uncoupled case is no longer a function of the SST anomalies.

A 30-year run of the model confirms that it asymptotes rapidly to a limit cycle with a

period of about 3.6 years (Fig. 1a). Figures 1b and lc show the meridional structure of the |Fig. 1

SST anomalies at a transition phase (shortly after year 5) and a warm phase (near year 6),
respectively. Figures 1d and le show the thermocline depth anomaly £ at these two phases.
It can be seen clearly that thermocline depth anomaly h leads SSTA. Hereafter, we will refer
to the results of the model run without data assimilation (and without any errors imposed) as
the “reference solution.” The reference solution presents many typical features of the ENSO
phenomenon, including a standing oscillation in SST, with subsurface dynamics providing

the memory (Suarez and Schopf, 1988; Neelin et al., 1994).



Figure 2 shows the time-longitude anomaly plots of the reference solution’s SSTA,

Figure 2

wind stress (7), Kelvin-wave (¢go) and first Rossby-wave (¢g2) amplitude for 30 years. The
SST anomalies are confined to the eastern part of the basin. Their oscillation has a strong
standing component, while slight eastward propagation is also present. The wind-stress
anomalies lag slightly behind the SST anomalies in time, and are shifted to the west of the
SST anomalies in space, with the maximum located in the central part of the basin.

Differences in phase and in the location of the maxima among the SST, Kelvin- and
Rossby-wave fields indicate the important effect of ocean-wave dynamics on the oscillation.
Notice that the slowly propagating oceanic weaves here are not the conventional free-basin
modes, but rather a packet of mixed SST /ocean-dynamics modes of the coupled system
(JN; Hao et al., 1993; Neelin et al., 1994). This is especially apparent in the presence of
the Rossby-wave component along the equator itself, with opposite phases in the eastern
and western part of the basin, while the Kelvin-wave component still exhibits predominantly
eastward propagation.

Since the surface-layer coefficient &5 is set to be zero here, the thermocline feedback
dominates (JN; Hao et al., 1993). Large variations of the SST in the eastern part of the basin
are mainly due to the shallowness of the mean thermocline there. In the western part, the

SST anomalies are smaller since the mean thermocline depth there is much greater.
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3. Data assimilation methods
a. Methodology
1) EXTENDED KALMAN FILTER (EKF)

Since the SST equation is nonlinear, the extended Kalman filter (EKF) is applied here
for assimilating the observations. In the EKF, the nonlinear model is linearized around the
current state when estimating the propagation of the forecast error, while the state itself
is advanced according to the full nonlinear model. Miller et al. (1994) discussed a number
of distinct Kalman filter extensions to nonlinear systems. Ide and Ghil (1997a, b) studied
the EKF for vortex systems in the time-continuous case. We describe the EKF here briefly,
following the unified notation of Ide et al. (1997).

The model is given in discrete form by
X (tsr) = Mylx(t)] 1)
Here x*(t;) is the best estimate of the model state at the last time step k, and M}, is the state
transition function; superscripts “a” and “f” stand for “analysis” and “forecast,” respectively.

One assumes that the underlying natural system evolves according to the model (1),

perturbed by random noise n(t),

X! (tr1) = Mi[x"(te)] + m(te). (2)
Here 1 is a Gaussian white-noise sequence, with mean zero and model-error covariance Q,
En(ty) = 0 and En(t,)nT(4;) = Qidu, where E is the expectation operator and & is the

Kronecker delta. The natural system’s evolution is detected by observations contaminated

o
by errors €9,

Yi = He[x' (L)) + €3 (3)
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€7 1s also assumed to be Gaussian, white in time, with mean zero and covariance Ry. The
observation function Hj can be nonlinear as well. The superscripts “t” and “o” denote
“truth” and “observation.” Even though the dynamic model M} and observation Hj may be

nonlinear, a linear estimation of the model state, based on the observations, is sought:

Xa(tk) = Xf(tk) + dek7 (4)

where
di = y§ — Hi[x(4)] (5)

is the innovation vector. The weights K; for the observations are obtained by minimizing
the expectation of least-square distance between the analysis and the true state.

The EKF process can be divided into two steps (e.g. Gelb, 1974; Ghil and Malanotte-
Rizzoli, 1991; Miller et al., 1994) when observations are available at the current time
tr:

i) Forecasting step,

X (1) = My [x*(t-)], (6)
Pi(ty) = My P (8 )My + Q(ti—1); (7)
ii) updating step,
X*(tr) = X' (1) + Kid, (8)
P*(ty) = (I - KyH) P (1), (9)
K, = P'(1)H} [HP'(1)H + R.] (10)

The matrix K is the Kalman gain, which represents the optimal weight given to

observations in updating the model state, and Hy is the linearized approximation of the
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observation function H;. The state-transition matrix My is the state transition function
My, linearized about the current state. The system propagates the forecast-error covariance
linearly in time, while the state itself evolves nonlinearly, with M. When the functions M}
and Hj are linear, the EKF reduces to the conventional Kalman filter. When there is no
observation, only the forecasting step is performed, and the optimal estimation of the model
state is the model forecast. The analysis-error covariance P% in this case is the same as the

forecast-error covariance Pi-

2) LINEARIZED KALMAN FILTER (LKF)

The structure of the forecast-error covariance represents the impact of the model
dynamics on the model-error propagation. For a nonlinear system, the evolution of the
forecast-error covariances depends on the actual model trajectory. Given a prescribed
trajectory, the propagation of model-error structure can be carried out independently,

i.e., “off-line.” When linearization is done along a prescribed trajectory, the resulting
estimation process is called the linearized Kalman filter (LKF; Gelb, 1974; Fukumori and
Malanotte-Rizzoli, 1995).

The LKF scheme, like the EKF., estimates the propagation of the model state and model
error. The weights of the observations for the estimation of the model state are calculated
according to (10). In the LKF scheme, however, the nonlinear functions Hy and M), are
linearized about the prescribed state vector xF, which is specified prior to processing the
observations. The Kalman gains may be precalculated and stored in the computer and there
is no feedback of the updated model states on the estimation of Pf.

The LKF scheme is often used to avoid difficulties that arise from the need for repeated

numerical differentiation of the state transition function M. Our main purpose in using it
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for the present study is to obtain as clear a picture as possible of the effects of coupling on
the structure of the error correlation field.

On the other hand, the LKF is generally less successful in assimilating data than
the EKF scheme because the fixed trajectory is often not as close to the true one as the
sequentially updated trajectory (Gelb, 1974). Therefore, we implement the EKF scheme for
the actual assimilation experiments with observations, but use the LKF scheme to investigate
systematically an “off-line” model-error propagation in the absence of observations. In the
present section, we use therefore Eq. (7) to compute the evolution of the error covariances,
with the model matrix My, given by the linearization of M} about the reference solution of

Fig. 1.

b. Error covariances
1) MODEL-ERROR COVARIANCE Q

The most severe errors in tropical-ocean prediction seem to arise from wind-stress errors
(Leetmaa and Ji, 1989; Graham et al., 1992; Hao and Ghil, 1994; Miller et al., 1995). We
introduce, therefore, model errors at every time step by adding noise to the wind stress that
is obtained from the model atmosphere’s response to SST anomalies. The wind-stress error is
specified as in Miller and Cane (1989), Miller et al. (1995) and Cane et al. (1996). It is taken
as white in time and Gaussian-correlated and homogeneous in space. The errors are assumed
to have the same meridional structure as the atmospheric response to the SST anomalies.

The particular form used for each component of the wind-stress error covariance matrix
QY is given by

< egq€; >= 0'72_ Onl 6_(Ii_rj)2/2Li; (11)
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here e;; and e;; are the wind-stress errors at locations ¢ and j, at time steps k and [,
respectively, dz; is the Kronecker delta, o, is the standard deviation of the wind-stress
error, and L, the prescribed decorrelation distance. We use o, = 0.02 Pa and L, = 10° of
longitude, as used by Miller and Cane (1989).

Model error is constructed by projecting the wind-stress error onto the prognostic model
variables. The nonlinear SST equation (A1) is linearized with respect to the model’s current

state to obtain the model SST errors, i.e.,

oM
n(ty) = 8—7'kek’ (12)

where 7 1s the wind stress and ej is the wind-stress error at time ¢;. Our model-error

covariance Q is then computed from 7, as described in Appendix B.

Figure 3 shows model-error correlations between SST and selected ocean wave Figure 3

coefficients—the Kelvin (o), and the first and the last even Rossby coefficients of this model
(g2 and g14). The autocorrelations of the model variables exhibit a structure similar to that
of the wind-stress error imposed. All Rossby-wave modes are positively correlated with each
other, since they travel in the same direction and thus the wind stress projects onto them
with the same sign. However, model-error correlations between the Kelvin and Rossby waves
are negative. Negative correlations among these waves were also obtained by Miller and Cane
(1989), who considered the wind-stress noise in an equatorial ocean wave model. The SST
correlates positively with the Kelvin and negatively with the Rossby waves.
A first-order approximate projection, Eq. (B3), is used to transfer the model-error

covariance of the wind stress to the model’s other variables. Hence, the estimated forecast-

error structure is accurate only when the model error is fairly small. A particular problem
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that may arise otherwise is loss of positive definiteness of Q during the projection procedure
(Balgovind et al., 1983; Parrish and Cohn, 1985; Boggs et al., 1995; Gaspari and Cohn, 1999).
The diagonal elements of QQ are required here to be positive and have a minimum value
on the order of 107¢ to prevent this problem from occurring. The assimilation experiment

results shown later suggest that the projection, so modified, is satisfactory.

2) OBSERVATION-ERROR COVARIANCE R

The observation error covariance matrix R is prescribed here as a diagonal matrix,
R;; = 07d;;, where o; is the variance of the state variable z;. The observations are represented
as measurements T' of SST, amplitudes ¢, of the oceanic waves, or atmospheric wind-stress
data 7 at longitudinal locations; they are all taken twice a month if no other specification is
given.

The observations are contaminated by white noise, with the following standard
deviations: o7 = 0.5 K; o7y = 0.02; o7, = 0.01; 07 = 0.01 Pa. Note that the standard
deviations for all wave coefficients are in nondimensional units. The equivalent observational
errors for more conventional quantities—~zonal current u, thermocline depth anomaly A, and

1

Loy =1.2m; 02 =0.275 cm day ™.

vertical velocity w are: ¢ = 0.02 m s~

3) INITIAL FORECAST-ERROR COVARIANCE P{

The initial errors are white in space, with the following standard deviations at all grid
points: or = 0.9 K; 0,y = 0.06; 0,, = 0.04, for n = 2,4,6; o, = 0.03, for n = §,10,12, 14.
The standard deviations for all wave coefficients are in nondimensional units, as for the
observation errors. The initial forecast error covariance P is assumed to have a diagonal
= 02§,

structure, with its elements equal to the variances of the state variables at ¢ = 0: sz’j
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4. Forecast-error statistics

The behavior of forecast-error covariances is of interest for our understanding of how data
assimilation works, in theory as well as in practice. For a linear system, the Kalman filter
correctly estimates the forecast-error covariance, which represents the expected relationship
between the forecast errors, based on initial uncertainties, model errors and model dynamics,
and thus provides the optimal gain K for the observations. For a nonlinear system, the
EKF is nearly optimal in most circumstances (but not all; see the discussion of Miller et al.,
1994, 1999, for various strongly nonlinear models). In this section, we study forecast-error
propagation by linearized model dynamics according to (7), in preparation for the actual
data assimilation experiments.

The random wind-stress errors affect the evolution of P! by appearing in (7) through
the model-error covariance Q. The latter is obtained according to the error model governed
by (11) and (12). In practice, we have used a different value of Qj at each time step k. This
value was obtained by using the outer product Q; = n,m1, without taking the expectation,
that is, each m; 1s a particular random vector. The time-averaged effect on the evolution of

P! is approximately the same as using the proper Q, given by Eq. (B7), for each time step.

a. Uncoupled case

Experiments are carried out first for the uncoupled case. In this case, the tropical ocean
model includes no ocean-atmosphere coupling feedback and is forced by a prescribed time
sequence of wind-stress, generated by the coupled model. With no wind-stress noise added,

the uncoupled run reproduces the time evolution of the ocean in the reference solution.
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The state transition function My can be written symbolically as
My =M @ M e M. (13)

Here M,EO) represents the ocean operator, given by Eqs. (Al)-(A19); M,ga) the atmospheric
operator, given by the linear Eq. (A20); and M}gc) the coupling operator, given by Egs.
(A21)-(A28). The symbolic summation operation @ indicates that the set of variables on
which one of the nonlinear operators on the right-hand side of Eq. (13) acts is distinct from
the other two sets and that together these three sets of variables span the entire state space

of the full model. The linearized version of (13) is then
M; = M o MW o M. (14)
For the forecast-error evolution in the uncoupled case we thus use
M, = M\ (15)

with prescribed wind stress. The LKF in this case still uses the full Qg, as described above.
This is not entirely self-consistent but helps us isolate and highlight further the role of
coupled vs. uncoupled dynamics in forecast-error evolution.

To track the error evolution, we compute the estimation error standard deviation, i.e.,
the square root of each diagonal entry of P, and refer to it as the root-mean-square (RMS)
error hereafter. In the uncoupled case, the RMS error of each field at each grid point reaches
an asymptotic behavior after a fairly short transient of a few months. This asymptotic
behavior is the result of the competition between three effects: (i) the oscillatory dynamics
of the model ; (ii) the steady pumping of error into the model by the addition of Qj at every
step k; and (iii) numerical dissipation that mimics physical dissipation of energy and, hence,

error (Ghil et al., 1981; Fukumori and Malanotte-Rizzoli, 1995).
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In the uncoupled model, with no feedback between ocean and atmosphere, the forecast

errors for the amplitude gy of the Kelvin wave and ¢, of the first Rossby wave quickly reach

their steady-state levels (Figs. 4b, c¢). This saturation is expected since the ocean is driven |Figs. 4

by the wind and no SST changes are allowed to feed back to the oceanic waves in this case.
Thus the latter two effects balance each other almost exactly and the oscillatory effect is
absent from the wave-component errors. At steady state, the Kelvin wave exhibits a fairly
gradual eastward increase of the forecast error, while the Rossby waves have almost constant
forecast error over most of the basin, with larger values concentrated near the eastern basin
boundary.

SST forecast errors, on the other hand, are dominated by a regular oscillation with a
period of about 3.6 years, as suggested by Fig. 1 (see also Jiang et al., 1995; Moron et al.,
1998). They are concentrated overall in the central and eastern basin, while their peak values
lie in the central basin (Fig. 4a). At the time where these peak values reach their asymptotic
steady state, at ¢ ~ 15 years, they are about twice as large as the accumulated model errors
directly imposed on the SST field (not shown). This difference indicates that the wind-stress
error transmitted through the oceanic waves to the SST is amplified by the model dynamics;
but the RMS errors in SST also reach a cyclo-stationary steady state, due to the balance
between the model-error pumping and the dissipation.

The zonal variations of the forecast errors for the ocean waves are consistent with the
analytical arguments by Miller and Cane (1989) that the faster Kelvin wave picks up more
wind-stress errors on its way eastward, while the slower Rossby waves do not accumulate
much error during their propagation westward, since the wind-stress error is white in time,

but correlated spatially. The large Rossby-wave forecast errors that occur at the eastern
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boundary are due to the reflection of the Kelvin wave, which has a larger forecast-error level
there (Fig. 4c).

The forecast-error correlations estimated by LKF at the end of 5 years are shown in

Fig. 5, by which time a fairly steady structure has emerged. The correlation patterns display]

Fig. 5

clearly the impact of the oceanic waves: the autocorrelations for Kelvin or Rossby waves are
highest in their respective directions of propagation (Figs. 5d and 5g). The angle between the
axis of maximum positive correlation of distinct Rossby waves and the main diagonal—about
22° for gy and g4 vs. 39° between ¢z and ¢4 (see Figs. 5h and 5i)—corresponds to the
difference between their wave speeds; e.g., g4 travels at 3/7 of the speed of ¢y, while g4
travels at 1/9 of ¢;’s speed. In the absence of stochastic perturbations, these correlations
would be reduced to sharp straight lines whose slopes can easily be computed from the phase
velocities of the various waves involved.

The positive correlations near either zonal boundary between the Kelvin and Rossby
waves (Figs. be, f) stem from the wave reflection there. The slower phase speed of the highest
wave (qi4) results in a much smaller positive region for its correlation with the Kelvin wave
(Fig. 5f) than that in the cross-correlation between the lowest Rossby wave ¢y and the Kelvin
wave qo (Fig. be).

The ocean’s thermodynamic processes result in a tight SST autocorrelation for the
western part of basin, and broader structure in the central and eastern basin (Fig. 5a). The
wide correlation area is associated with the large SST forecast error in the eastern basin
(Fig. 4a). The positive correlation between the SST and Kelvin wave is consistent with the
oceanic waves’ impact in the finite basin on the SST: the Kelvin wave anomalies excited

by the wind stress in the central basin induce SST changes with the same sign on the way
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to the east, while Rossby waves reflected from the Kelvin wave off the eastern boundary
also enhance the SST changes in the eastern basin (Figs. 5b and 5¢). However, the Rossby
waves directly excited by the wind stress and their Kelvin-wave reflection off the western
basin boundary correlate negatively with the SST changes in the entire basin (Fig. 5c).
These negative correlations represent the negative feedback process between the ocean and

atmosphere there.

b. Coupled case

The LKF is applied next to the coupled model to estimate its forecast-error structure.
The model-error covariances Qy are the same as for the uncoupled case, while the linearized
error-evolution dynamics is now given by the full My, of Eq. (14). The difference between the
coupled and uncoupled cases is in the state transition matrix M.

The forecast errors in the coupled case are much larger than those in the uncoupled

case (Fig. 6). The expected forecast errors in SST anomalies (Fig. 6a) are one order of |Fig. 6

magnitude larger than in the uncoupled case, but the spatio-temporal pattern of the errors
is quite similar (cf. Fig. 4a). The coupling processes clearly amplify the model’s SST errors.
The errors in the oceanic wave amplitudes go and ¢ (Figs. 6b, c) are a few times larger
than in the uncoupled case (see Figs. 4b, ¢) and their patterns differ substantially from the
uncoupled case. In the latter, both gy and ¢y errors were steady in time after 5 years and
increased monotonically from west to east, gradually for ¢y and abruptly near the eastern
boundary for ¢z (Figs. 4b, ¢). In the coupled case at hand, both ¢y and ¢z evolve over the
first ten years toward a fairly regular oscillation, with two separate maxima, in the eastern

and western basin (Figs. 6b, c¢). For the Kelvin wave, the maximum in the eastern basin is
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larger, while it is larger in the western basin for the first Rossby wave. This makes sense
given the accumulation of errors as each wave propagates across the basin.

The forecast-error correlation structure of the coupled case, estimated by LKF at the

end of year 5, is shown in Fig. 7. The forecast-error correlations in the coupled and the |Fig. 7

uncoupled cases have, overall, similar structures when SST is involved (compare Figs. Ta—c
with Figs. ba—c). Roughly speaking, the SST errors over the entire basin are negatively
correlated with the errors in the oceanic waves over the western part of the basin and
positively correlated over the eastern part. The relatively small differences between these
correlations and those in the uncoupled case are not surprising, because the model-parameter
values used in the present paper—moderate coupling of ;4 = 0.76 and no upwelling feedback,
i.e. ; = 0—yield a strong influence of thermocline depth on SST.

The forecast-error statistics of the oceanic waves, on the other hand (Figs. 7d-i), show
major differences between the coupled and uncoupled cases. The coupling processes enhance
all the correlations, especially the cross-correlations between oceanic waves, and emphasize
an East-West seesaw pattern. This seesaw structure is expressed by negative auto- as well as
cross-correlations of the ocean waves in the western basin, and might be related to the most

unstable coupled mode in this intermediate model (JN; see also Figs. 6b, ¢).

5. Assimilation experiments

With confidence in our sequential estimation approach confirmed in the previous section
on covariance propagation, we continue the investigation by assimilating various types of
observations. The questions which we want to address in this “model world” campaign are:

What is the minimum number of observations needed in order to follow the evolution of an
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ENSO cycle? Where should these observations best be taken to minimize estimation error
for the ocean state and SST?

We conduct identical-twin experiments in which the true model history, as well as the
forecast and observations, are produced by the same model. The true history differs from
the reference solution in Figs. 1 and 2 in two respects: (i) an initial error that is drawn
from the distribution having P as its covariance matrix; and (ii) model errors drawn from
a distribution that has Qj as its covariance matrix and are imposed at each step during the
model simulation. The observations are taken twice a month and differ from the true-state
history due to errors in the observation process with covariance matrix R. The matrices P!,
Q and R were all described in section 3b.

The assimilation experiments are all carried out for 30 years. They start from an initial
state that differs from the true initial state by having a different phase along the reference
solution’s limit cycle. In these experiments, we use the full EKF, according to Eqgs. (6)—(10).
The case of a model that generates the true-state history being different from the one that is
used for the assimilation is handled in Part II.

In the following experiments, ¢, data at a single point refer to observations of all the
oceanic waves included in the model at that zonal location. Since the meridional structure
of the ocean fields is projected on the Hermite functions, these observations are equivalent
to having measured mass and velocity fields for a whole meridional section: the projection
operator is bijective (1-to-1 and onto) when restricted to the finite-dimensional subspace of
interest. In reality, oceanic observations do not provide direct measurements of ¢,. However,
in our present, highly simplified model, g, data can be used directly and should provide

theoretical guidance on how to use subsurface mass and velocity data in a coupled system.
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a. Simulated true state

Figure 8 shows the time evolution of the SST anomalies, wind-stress 7, Kelvin-wave |Figure 8

amplitude gy and the first Rossby-wave amplitude g, for the simulated true-state history that
starts with perturbed initial data. In our terminology, the reference solution (see Fig. 2) is
the model run without any errors imposed, while the history of the true states is generated
by adding errors to the initial state and to the wind-stress forcing. The wave fields gg and
g2 are noisier than the SST anomalies because the wave coefficients ¢,, n = 0,2, ..., 14, are
directly affected by the wind-stress noise while SST is only influenced through the integrated
effect of the wind errors [see Eq. (A20)].

We choose the initial state of the true-state history to be in a different phase of the
ENSO cycle than the reference solution’s initial state. The reference solution (see Fig. 2a)
starts from a transient phase that enters immediately a cold-anomaly phase (La Nina),
while the true-state history (see Fig. 8a) starts from the next transient phase that enters
immediately a warm-anomaly phase (El Nifio). Our data assimilation experiments all start
out with the model’s initial state being the same as in the reference solution (Fig. 2a), rather

than the “true” initial state (Fig. 8a).

b. State estimation
1) SST DATA AT A SINGLE LOCATION

We first perform an EKF assimilation run with a single SST observation located in
the eastern basin at 108°W. To the extent that the SST equation (A1) in the JN model
represents off-equatorial behavior as well, such an SST observation should also be thought of

as a meridional section of SST measurements.
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Time evolution of the SST anomaly and the amplitude gy of the Kelvin wave over 30

years are presented in Figs. 9a, b. EKF assimilation does recover the phase information of

Figs. 9

the true-state history with the initial state starting from a different phase (compare Fig. 9a
with Fig. 8a). The diagonal elements of the forecast-error covariance matrix P! (dashed)
and analysis error covariance matrix P* (solid) for the SST (Fig. 9¢) are concentrated in
the eastern basin, while those of gy are spread over the whole basin (Fig. 9d). This is not
surprising because we have seen in sections 4a and 4b that SST forecast errors are the largest
in the central and eastern basin, while the forecast errors for the wave amplitudes ¢, are large
across the whole basin (see especially Fig. 6). The improvements in both SST and ¢, indicate
that the SST information is transferred to the oceanic waves by the EKF assimilation. That
the latter does capture the ocean-atmosphere coupling processes well is consistent with the
large SST-ocean-wave cross-correlations in Fig. 7.

We wish to determine the preferred observing location for the SST, so that the forecast
errors are smallest when the unique SST observation is taken at that location. To do so,
EKF experiments were performed for two other SST observation locations, in the western
basin at 152°FE and in the central basin at 177°W. The three single-SS'T experiments will be
referred to by the index of the grid point at which the single observation is taken. It is found
that the assimilation errors for SST observations are smallest when using the SST data in

the eastern basin (Fig. 9), and increase when the SST observation moves toward the west.

The RMS errors of the EKF assimilation across the basin width are shown in Fig. 10 for

Fig. 10

the model forecast without data assimilation, as well as for the three experiments with SST
data located in the eastern, central and western basin. The state-estimation errors when

using an SS'T' observation in the eastern basin at 108°W (denoted by SSTy) for the SST
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anomaly, Kelvin and the first two Rossby-wave amplitudes (heavy solid) are consistently
quite small. Their being less than 10% of the maximal model-forecast errors (short dashes)
indicates the effectiveness of the EKF scheme.

The assimilation errors with the single observation at 177°W (denoted by SSTg) are
considerably larger, but still less than 50% of the maximal errors. The data assimilation
experiment using an SST observation in the western basin at 152°E (denoted by SSTy)
barely reduces the model forecast errors without data assimilation (short dashes). The latter
assimilation experiment fails to recover the right phase of the true-state history, even though
it recovers the correct magnitude of the anomalies (not shown). This is not surprising
because in our simple coupled model, there is not much SST signal in the western basin at
all (see Figs. 2a and 8a).

The results in Figs. 9 and 10 suggest that the single-section SST measurements in the
eastern part of the basin are most valuable, those in the central basin are still quite useful but
do not reduce the estimation errors as much as necessary, while those in the western basin are
barely useful at all. The usefulness of SST data can be related to the corresponding forecast
error at the observed location, since the SST errors are largest in the eastern part of the
basin and decreased westward (Fig. 10a). In fact, roughly speaking, the contribution of an
observation in an EKF-based assimilation is proportional to the corresponding forecast-error

variance at the observed location; see Eqs. (4) and (10).

2) SUBSURFACE DATA AT A SINGLE LOCATION

The EKF assimilation of the subsurface data ¢, at a single location in the eastern basin
(111°W) works as well as that of the SST data nearby and even somewhat better (Figs. 11a,

¢). Note that we assumed all the ocean-wave coefficients ¢,, n = 0,2,...,14, are known

Figs. 11
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at that location. The analysis-error covariances P* (solid) are successfully reduced by the
¢, updates and result in forecast-error covariances P! (dashed) that are barely any larger
(Figs. 11b, d). Alternate odd and even peaks in P! for SST (Fig. 11c) correspond to positive
and negative phases of the SST anomaly cycle (Fig. 8a).

The forecast-error correlations estimated by EKF at the end of 10 years are shown in

Fig. 12. Compared to the LKF estimates for the coupled model (Fig. 7), the autocorrelations| F'ig.

12

(Figs. 12a, d, g vs. Ta, d, g) are quite similar but the cross-correlations differ more noticeably.
The latter differences are probably due to the fact that the EKF captures better than the
LKF the evolution in the spatial error structure over a full ENSO cycle. Perhaps most telling
is the difference in the structure of the cross-correlations between SST and ¢y (Fig. 12b vs.
7b). The EKF must be capturing the nonlinearity in the subsurface temperature relation to
thermocline depth that in turn affects SST. This relation is known to differ between a warm
and a cold phase.

The preferred location to measure subsurface data is investigated by using ocean-wave

data ¢, at a single location in the western (149°E), central (180°) or eastern basin (111°W).

The improvements in the SST (Fig. 13a) and ocean-wave fields (Figs. 13b-d) are very similar|Fig.

13

This is to be expected because the forecast errors in Kelvin- and Rossby-wave amplitudes are
comparable in different parts of the ocean basin (see Figs. 6b, ¢). Since strong ocean-wave
signals are present throughout the basin (see Figs. 2b, d and 8b, d), ¢, observations taken at
different locations are able to provide the information needed to recover the true state.
Uncoupled ocean-wave propagation is the mechanism of ENSO memory in the delayed-
oscillator “toy models” for ENSO (Suarez and Schopf, 1988; Battisti and Hirst, 1989; Jin,

1997; Burgers, 1999). If this were the case in less highly idealized models, one might think
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that observations in the western part of the basin would provide the most useful information.
Hao and Ghil (1994) showed this to be true for the uncoupled ocean model of Cane and
Patten (1984), which is slightly more realistic than the JN ocean model used here. They
attributed this result in their model to the Kelvin waves’ greater speed and hence efficiency
in carrying information eastward.

The same could be true in the coupled situation, if the wind-stress forcing were
perfectly simulated by the model. Because the coupled model is imperfect, however, the
western-basin observational information——carried eastward, albeit quite efficiently, by Kelvin
waves—becomes less accurate than the data observed in the eastern basin (Figs. 13b—d).
Hence the g, data from the central and eastern basin are just as useful in our coupled model

as those from the western basin.

3) THREE SST OBSERVATIONS

Additional assimilation experiments were carried out in which a number of distinct
sections of SST and ¢, data were used. These are included in Table 2, along with the results
of the single-section experiments already discussed. We show 30-year RMS values of Nino-3
SST, and those of ocean-wave coefficients qg, ¢2 and ¢4 averaged over the whole basin.
An EKF experiment with SST observations at three locations—177°W, 139°W, and
108°W—is denoted by “3%xSST” in Table 2. The errors in this case are much smaller than
when using SST data in the west-central basin (177°W) only, but just slightly better than
those with SST data in the east-central basin (139°W) or the eastern basin (108°W) alone.
The small gain by using the additional SST data over a single, well-placed cross-section

suggests that the latter can deliver most of the benefits, at least in this simple model.
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4A)MULTIPLE SUBSURFACE SECTIONS

We saw that a single section of subsurface data gives assimilation results that are better
than the best single-section results with SST data. The ocean-wave results are almost
independent of the single section’s location, as the corresponding curves in Fig. 14 are almost
indistinguishable. The numerical results in Table 2 show that, in fact, the farther east the
section the better, albeit by a very small margin.

To see whether one can still improve, in our simple coupled model, the EKF results for
subsurface data, we ran assimilation experiments with multiple ¢, sections. We denote the
case with two observations of ¢, at 149°E and 111°W as the “2xq,” case, and the case with
observations of g, at 5 locations—at 143°E, 160°E, 180, 142°W, and 111°W—as the “5x%gq,”
case (Table 2).

The assimilation run with five sections does have the smallest errors overall, in both
SST and Rossby waves, but the additional gains of using the 2%¢q, and 5%¢q, data sets over
the eastern-basin data at 111°W only are quite limited. In fact, the Kelvin-wave error in
the 5%g, experiment is slightly worse than in other experiments with subsurface data, and
both the go and g, errors are slightly worse than in the g,90 experiment. These are subtle
effects due to the model’s distinct dispersion relation for the Kelvin vs. the Rossby waves
and its nonlinearity. We refer to Hao and Ghil (1994) for a discussion of the effect of wave
dispersion on data assimilation in a linear, two-dimensional shallow-water model of the
tropical Pacific and to Miller et al. (1994) for a similar discussion of the effect of nonlinearities
in zero-dimensional but highly nonlinear models.

Such subtleties aside, one cross-section of subsurface data appears rather satisfactory

for this simple coupled model. Better spatial resolution and a more faithful representation
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of both oceanic and atmospheric processes could, however, increase the number of degrees of
freedom that are active in the system and thus the number of observations required to track

it accurately.

c. Weights assigned by KKF

To understand how the EKF treats the data in different parts of the basin, the weights

given to the observations in the two-section set of subsurface data are examined in Fig. 14.

Fig. 14

The weights shown here are snapshots at time step t = 1,2, ..., 30 years.

The observations in the eastern part of the basin are given much more weight overall,
in particular when the affected variable is distinct from the observed one (see especially
Figs. 14a and d). Since the strongest interaction between the SST and wave fields occurs
in the eastern basin, it is reasonable to assign a larger weight to oceanic observations there,
given the same observational accuracy, especially when correcting SST. This emphasis on
eastern-basin observations is smaller when considering the effect of gy or ¢, on each other
(Figs. 14c and e). Note that the weights given to either gy or g2 when updating the field
that is being observed (Figs. 14b and f)—at the observation location itself—is about 0.5.
This confirms that our assimilation scheme is well-balanced, in the sense that it assigns
comparable weights to the current observations, on the one hand, and to the forecast based
on past observations, on the other.

We also find that the weights have similar shapes and magnitudes during different phases
of ENSO, except for the weights given to ¢z observations when updating SST (Fig. 14d). The
shapes are still similar in the warm and cold phases, but the magnitude of the weights and

the locations where the weights peak are shifted. During the warm phase, the g, observations
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in the eastern basin (gn20: black curves) are given larger weights in updating SST, and the
largest weight occurs further towards the basin’s east coast than during the cold phase, while
the observations in the western basin (g,4: gray curves) are given smaller weights. During the
cold phase, the observations in the western basin are given more weight and the maximum
of the weights—for both ¢,4 and ¢,20 observations—occurs further towards the central basin.
The magnitude of the weights during the transitions phases of ENSO are in-between the
extreme-phase magnitudes. The EKF thus assimilates observations of oceanic waves in the
eastern basin more effectively during El Nino, while the observations in the central basin are

more useful during La Nina.

6. Conclusions
a. Summary

In this paper, we studied data assimilation for a simple, but fully coupled tropical
ocean-atmosphere model. Our coupled model is based on Jin and Neelin’s (1993) and Neelin
and Jin’s (1993) (JN throughout the main text) “stripped-down” version of Zebiak and
Cane’s (1987) model and consists of an upper-ocean model of the tropical Pacific and a
steady-state atmospheric response to the ocean model’s SST anomalies. An advanced data
assimilation method, the extended Kalman filter (EKF), was used to tackle the model’s
nonlinearity. This coupled model is simple enough for the EKF to be applied to its full state
space and can serve therefore as a benchmark for future data assimilation studies with more
realistic and highly resolved coupled models.

Wind-stress errors were assumed to be the sole source of model errors. This assumption

is a useful simplification for two complementary reasons. First, wind-stress errors are a
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dominant source of errors in the estimation and prediction of the tropical climate system
(Miller and Cane, 1989; Hao and Ghil, 1994; Chen et al., 1999). Second, wind-stress errors
represent schematically the main effects of weather noise in the system.

We started by investigating the dynamical structure of the forecast errors in either the
coupled or uncoupled framework, by applying the linearized Kalman filter (LKF), which
propagates the error’s covariance matrix linearly along a reference solution (Fig. 2). The
forecast-error structure for the coupled model differs from that of the uncoupled one. The
ocean-atmosphere coupling feedback enhances the forecast-error correlations, especially the
cross-correlations among the various oceanic waves (compare Figs. 5 and 7).

The coupling induces and reinforces, in particular, a seesaw feature along the equator,
with error correlations of opposite sign in the oceanic waves on either side of the ocean
basin. This seesaw pattern seems to result from the constraint imposed on the waves by the
tropical ocean’s Sverdrup balance between the surface forcing and the pressure gradient. The
influence of wave reflection at the zonal boundaries is also enhanced in the coupled case. The
difference between the forecast-error covariances of the uncoupled and coupled cases thus
suggests that we pay special attention in passing from data assimilation in the former to the
latter.

Next, we have shown that the EKF scheme can effectively estimate the tropical
ocean-atmosphere state for the coupled model. To restore the phase and amplitude of its
ENSO oscillation, the model needs only observations covering a single meridional section.
Either sea-surface temperature (SST) or subsurface data along such a section appear to
suffice (Figs. 9 and 11).

The location of SST observations should be well chosen: a section located in the eastern
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basin tends to be the most useful (Fig. 10 and Table 2). The usefulness of SST observations
decreases towards the western part of the basin. Subsurface data anywhere in the basin

reduce the initial errors dramatically (Fig. 13), with the section in the eastern basin having
the smallest errors (Table 2). The nonlocal response of the atmosphere to the SST anomalies
ensures a smooth wind field and hence ocean-wave fields that are smooth, too. Atmospheric
observations of the wind stress, which is not a prognostic variable of the model, can be easily

assimilated with the EKF scheme as well (not shown here).

b. Discussion

The EKF extracts the information content of sparse observations, greatly enhancing
the usefulness of a limited data set. The small number of data needed to track the coupled
model’s periodic solution in the present model is probably due to the fact that a pair of
oscillatory modes with a simple spatial structure dominate its evolution. This fact was
demonstrated for the model at hand by JN and Hao et al. (1993).

The dominance of a few simple modes in the temporally irregular and spatially rich
behavior of a number of related ENSO models was shown by Jin et al. (1994, 1996) and
Tziperman et al. (1994), among others. Rasmusson (1991), Keppene and Ghil (1992), Jiang
el al. (1995) and other authors also found a large fraction of the observed variance in the
tropical Pacific’s various climatic fields to be captured by a few oscillatory modes. Ghil and
Jiang (1998) showed that predicting the, possibly related, quasi-biennial and low-frequency
mode is crucial for the accuracy of both dynamical and statistical ENSO forecasts. Ghil
and Robertson (2000) argued, therefore, that the evidence from a full hierarchy of climate

models, up to and including general circulation models (GCMs)—as well as from observations
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and real-time forecast skill—supports the dominance of a few oscillatory modes in ENSO
variability on seasonal-to-interannual scales.

This situation for the tropical coupled system resembles that encountered for the
mid-latitude ocean or atmosphere: a very small number of data can suffice to track solutions
of idealized models thereof (Todling and Ghil, 1994; Ghil and Todling, 1996; Ide and Ghil,
1997a, b). Ghil (1997), in reviewing this work, concluded that the number of data required
to track a model solution with the EKF can be comparable to the number of the model’s
dominant, linearly unstable and nonlinearly equilibrated modes (see also Ghil and Ide, 1994,
and Dee, 1995).

Indeed, our work, as well as other data assimilation studies for the tropical Pacific that
rely on the Kalman filter (Cane et al., 1995, 1996) and the EKF (Verron et al., 1999) suggest
that the number of observations needed can be as small as the number of degrees-of-freedom
required to describe the system’s evolution over the time interval of observation. As we
require to describe accurately a larger fraction of the variance, the number of modes required
to capture that fraction increases, and a larger number of observations will be needed. This
number can still be much smaller than the model’s number of grid-point or spectral-coefficient
variables, even for much more highly resolved and realistic models. Similar arguments apply
to the size of a Monte Carlo ensemble required for the accurate and efficient performance of
an ensemble Kalman filter (see also Keppene, 2000; Mitchell and Houtekamer, 2000).

The forecast experiments carried out in Part IT of our study using simulated data from
a Tropical Ocean-Global Atmosphere (TOGA)-Tropical Atmosphere Ocean (TAO)-like
array assimilated into the model’s oceanic component suggest that once a relatively large

set of observations is available, initialization of the uncoupled ocean model might suffice for
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good coupled forecasts, given the atmosphere’s rapid adjustment to the ocean state. Still,
further improvements of the ENSO forecasts can be made by using the coupled model in
the assimilation process. It is shown in Part II that the “TOGA-TAQ” data are sufficient
for good forecast skill in this intermediate model, and can be expected to provide accurate
enough initial states for a more complete coupled model, when using the EKF.

The next step toward an advanced forecast-and-analysis cycle in a fully coupled GCM
is to examine EKF or slightly suboptimal filter performance (Todling and Cohn, 1994;
Ghil, 1997) in a somewhat more realistic coupled ocean-atmosphere model. Such a model
could still have an oceanic component like the one used here. It would include, however, a
prognostic atmospheric component, albeit a fairly simple one. For a coupled system with both
components of GCM complexity, however, it is not clear how close to optimality a feasible
data assimilation scheme can be. The requirement to assimilate the fairly sparse observations
currently available into such a complex model, which has very different dominant time scales
in its oceanic and atmospheric components, points to the need for advanced assimilation

technology that yields initial fields consistent with the forecast dynamics.
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Appendix A. The model

The model description here is brief and we refer the reader to Jin and Neelin (1993) for details.

The feedback between the ocean and atmosphere takes place every time step.

a. The ocean

The ocean dynamics is described by linear shallow-water equations for the currents and a
nonlinear equation for the sea-surface temperature (SST). The dynamical variables are the three
velocity components, (u,v,w), and the thermocline depth anomaly h. We list and explain the

parameter values in Table 1.

1) SST EQUATION
The equation for the SST in the equatorial band is

aT oT 2
S tus H(w)%(T — Tou) — %(—UN)L”—QV(T —Tn) +ep(T —Ty) =0 (A1)

where T is the temperature of the surface mixed layer, uq the zonal current in this surface layer, w
the vertical surface current, and vy the meridional surface current at the northern boundary of the
equatorial box. Symmetry of SST and antisymmetry of vy are assumed.

The equilibrium value Ty of SST is set at 29°, er = (90 days)™! is the Newtonian damping
time, L, is the width of the box, and Ty is the off-equatorial SST at a distance L, from the equator.
The depths Hy and Hy of the two layers are taken here to be 50 m and 100 m, while Hy 5 = 75 m is

the depth scale that characterizes upwelling of the subsurface temperature Tgyp.
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An analytical, smooth version H(z) of the Heaviside function H (z) is used here,

1 z>0,
H(.r):{ (A2)

0 =<0

see Eq. (B6) in the next appendix.
The meridional velocity vy can be obtained by finite differencing of the continuity equation:

UN w Oouy
2—— = — — — A
Ly H1 8$ ( 3)

The subsurface temperature T%,; is parameterized as a function of thermocline depth anomaly h—a

deeper thermocline is associated with warmer upwelled waters:

h+ hg

*

Tsub = TsO + (TO - TSO) tanh ( ) (A4)

2) OCEAN CURRENTS

The vertical-mean motions above the thermocline are governed by the linearized reduced-gravity

shallow-water equations on a $-plane in the long-wave approximation,

Jdu oh T
5§—ﬁyv—|—eu_—ga—m+p—H, (A5)
oh
Byu = gy (A6)
oh Jdu Ov

Here 7 is the zonal wind stress, p is the oceanic density, H = Hy; + H; is the total depth of the two
layers, and € = (2.5yr)~! is the damping rate for the vertical-mean current. The relative adjustment
time coefficient § measures the ratio of the time scale of adjustment by oceanic dynamics to the net
time scale of SST change through the SST equation.

The usual boundary conditions for the shallow-water equations in the long-wave approximation

are used
u=0 at z=zg, (A8)

/_ udy =0 at z = zw, (A9)

o0
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where x5 and zw locate the eastern and western boundaries, respectively.

Given the linear change of variables

q=h+u, (A10)

r=h-—u, (A11)
the shallow-water equations (A5)—(A7) can be rewritten with ¢, 7, and v as the dependent variables,
in nondimensional units. Following JN, we truncate the equations so obtained to include only the

Kelvin mode and the first seven symmetric Rossby modes. The resulting equations for the oceanic

wave coefficients ¢, are

d dq0 B
(5%%-6)90—%—8:6 = 7o, (A12)
(n— 1)(5% + )y — %ﬂ = nry = [(n— )] 2r g, n= 2,4, ..., 14 (A13)
Z

here 7, is the zonal wind stress projected onto oceanic mode n, gy is the amplitude of the Kelvin
wave, and ¢,, n = 2,4, ..., 14, are the amplitudes of the first seven Rossby waves.
The horizontal components ug and vs of the vertical-shear current are governed by steady-state

equations dominated by damping due to interfacial stress between the layers (Zebiak and Cane,

1987):
H
€slg — ﬁyvs = ;{ ;{7 (A14)
piiy
€sUs + ﬁyus — 07 (A15)

where ¢, = (2 days)~! is the damping coefficient for the shear currents.
The vertical component wg of the shear currents can be calculated from the continuity equation

using us and v,:

Jus Ovus

wSZHl(@m + Yy

). (A16)

For simplicity, the three components of the shear current are written as:

us = byT, (A17)
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Ly T

=y, T Al
YT O H, Y oH (A18)
or
s — _bw H bu_; Al
w T+ H, e (A19)

here b, ~ Hy/Hies and b, ~ (H1/Lq)by, and L4 is the characteristic meridional length scale

determined by the damping time scale of vertical mixing: L; = ¢5/0.

b. The atmosphere

The steady response of the zonal wind-stress anomalies 7/ to SST anomalies 7”7 at the equator
is
T

1 x
: T'(s)e™%%ds — 565“5/ T'(s)e"*ds]. (A20)

Tw

'(2,0) = MA[SGSE“I/

T

Here A is an amplitude factor, ¢, is a Rayleigh friction due to boundary-layer turbulence, and p is

an ocean-atmosphere coupling parameter.

c. Climatological state and coupling

A smooth function that resembles the mean-annual observed wind stress in the Pacific along
the equator is used to set up the basic state:

7 = 0.60{0.12 — cos?[(z — mo);To]}, (A21)

with zg = 0.57L, where L is the basin width.
The coupled system is set up using one-way flux correction (Neelin, 1990), with total wind

stress 7 given by

T=T+4 T/; (A22)
7’ is derived from the atmospheric response to SST anomalies 7",
T'=T-T, (A23)

according to Eq. (A20).
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It is convenient to introduce a relative surface-layer coefficient §; which controls the anomalous
surface-layer currents due to coupling. These currents can thus be reduced or even turned off

completely to examine their effects without affecting the climatology:

us = s, (A24)
vy = U5 + S50l (A25)
ws = Ws + Ssw. (A26)

Here @,, T, Ws are the velocity components associated with the climatological wind stress, while

ul, vl w! are shear currents associated with the coupling:

!
wh = —b, 7 + Hlbu%—l, (A27)
vl = —b,7'. (A28)

Note that for the data assimilation experiments here, u, does not depend on 4.

Appendix B. The model-error covariance Q

The model-error covariance Q is derived from the wind-stress errors. Since the SST eqation
(A1) is nonlinear, linearization along the updated trajectory is employed when projecting the

wind-stress error. Schematically, our coupled system can be written in discrete form as

T}f = 2(Te_1, i) +9(T_y, q5—1s Tioy +€521), (B1)

af = Ly(gf_1) + Lo (T{_y + €8_y); (B2)

here g represents the state vector for all the ¢,, » = 0,2, ...,14, at time step k, and ej is the
wind-stress error at k. Since the oceanic waves have simple linear dynamics, L.(-) and L,(-) are
linear operators, while z(-,-) and ¢(-,-,-) are nonlinear functions associated with the advection

terms in the SST equation.
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Because of the interaction of the model state with the random noise e in the wind stress,
function g is very rough and cannot be integrated in the traditional Riemann or even Lebesgue
sense. Of the two forms of calculus available for stochastic processes, we use the Stratonovich
calculus here. Unlike the often-used 1t6 calculus, it resembles the traditional calculus in allowing
the chain rule for differentiation (e.g., Penland, 1996).

The linearized coupled system is

O9(T7 1, a5 _1:7i 1)
€k—1,
or

Tl‘cf R Z(Tlg—lvqli—l) —I_g(TI?—hqlg—hTI?—l) + (BS)

0l = Lo(af_1) + Lo(rf_y) + Lo(el_y). (B4)

The model SST errors 7] in Eq. (12) at grid point i (and time step k) are then computed from the

wind-stress errors e; and €;41 (both at time step k), at grid points ¢ and 7 + 1, according to

T
% = a0 (T = Tia)er + (1 =i v—1) (Tigs = Ti)ein]
1 1., w; w; Hyb,
~ H e ) AN = Tsw)[=bules + einn) + T 7 (e —e)] - (BD)
bw 1 1, Ui U;
- m—H (= — )1 = Tn) (e i)
H1[ vo%(vo)]+%(vo)]( N)(eit1 + €)

here b, and b, are the coefficients associated with the shear currents, as in Eqs. (A17-A19), while
At and Az are the time step and grid spacing, respectively. Note that we choose a smooth function

H(z) to represent the Heaviside function H (z) of Eq. (A2),
1
H(z) = 5[1 + tanh(z)]; (B6)

in (B5), wg and vy are appropriate scaling factors for the respective arguments of H.

The model-error covariance Q is finally computed as

Q=<nn" >, (B7)

where T is the transpose of the vector 1.
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Figure Captions

Figure 1. Reference solution for 30 years: (a) Nino-3 SST (solid; the dashed line denotes
the mean); (b) SST anomaly field (labeled SSTA) and (d) thermocline depth anomaly
field h at the transition phase shortly after year 5; (c¢) and (e) SSTA and h at the warm
phase around year 6. The symbol % denotes the time of the two phases, for which the

SSTA and h are plotted. Note that SSTA is zero outside the equatorial strip by definition.

Figure 2. Longitude-time plots (Hovmoler diagrams) for reference solution over 30
years. (a) SST anomaly (K); (b) wind-stress anomaly 7 (dyne cm™?%); (c) Kelvin wave
amplitude qo; and (d) first Rossby wave amplitude ¢;. o and ¢z are in nondimensional

units.

Figure 3. Model-error correlations (based on Q) projected from the wind-stress error:
a) SST—SST; b) SST—qo; ¢) SST-g2; d) Go—qo; €) Go—G2; f) Go—14; &) G2-q2; h) g2-q4; and
1) g2—q14 along the equator. The contour interval is 0.2.

Figure 4. RMS errors of LKF estimates for uncoupled case: a) SST anomaly; b) go; ¢)
Gz

Figure 5. Forecast—error correlations estimated by LKF based on Pf for the uncoupled

case at the end of year 5; same layout as in Fig. 3.

Figure 6. RMS errors of LKF estimates for the coupled case. Same layout as in Fig. 4.

Figure 7. Forecast-error correlations estimated by LKF based on P! for the coupled

case; same layout as in Fig. 3. The correlations are calculated at the end of 5 years.
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Figure 8. Simulated true state for 30 years: (a) SST anomaly (K); (b) wind-stress
anomaly 7 (dyne cm™?); (c) Kelvin wave amplitude qo; and (d) first Rossby wave ampli-

tude ¢3. qo and ¢y are in nondimensional unit.

Figure 9. Data assimilation with SST observation at 108W, indicated by the triangle.
(a) SST anomaly; (b) diagonal components of P! (dashed) and P? (solid) for SST; (c)

Kelvin wave amplitude go; and (d) P! (dashed) and P? (solid) for gq.

Figure 10. Zonal variations of 30-year averaged RMS errors for the model forecast
(short dashed line) and the assimilation with SST data at 152°E (SST4: long dashed
line), 177°E (SSTy: light solid line), and 108°W (SSTyo: heavy solid line): (a) SST
anomaly; (b) Kelvin wave amplitude go; (¢) first Rossby wave amplitude ¢z; and (d)
second Rossby wave amplitude g4. The errors are normalized by the maximum value
of all the errors. The three observing locations are shown by filled triangles along the

abscissa in each panel.

Figure 11. Same as in Figure 9, except that the assimilation is run with ¢, observations

at 111°W for 30 years.

Figure 12. Forecast—error correlations estimated by EKF at the end of 10-year assimi-
lation with ¢, data at 111°W. Same layout as in Fig. 3.

Figure 13. Same as in Figure 10, except that the assimilation is run with ¢, observations
for 30 years, at 149°E (gn4: long dashed line)), 180°(guo: thin solid line), 111°W (gy20:
thick solid line). The three observing locations are shown by filled triangles along the

abscissa.
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Figure 14. Snapshots of weights assigned by the EKF to the data in the 2-¢, cases: ¢4
(gray) and g,a0 (black), plotted over 30 years at one-year intervals. Left panels are for the
go observations, right panels for the ¢z observations. The analysis fields are SST (top),
go (middle), and gy (bottom panel). The arrows in panel (d) denote the approximate
locations of the peak weights during cold and warm phases. The two observing locations
are shown by filled triangles (gray for the western and black for the eastern basin) in

each panel.
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Figure 1. Reference solution for 30 years: (a) Nino-3 SST (solid; the dashed line denotes
the mean); (b) SST anomaly field (labeled SSTA) and (d) thermocline depth anomaly
field h at the transition phase shortly after year 5; (¢) and (e) SSTA and h at the warm
phase around year 6. The symbol * denotes the time of the two phases, for which the

SSTA and h are plotted. Note that SSTA is zero outside the equatorial strip by definition.
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Figure 2. Longitude-time plots (Hovmoler diagrams) for reference solution over 30

years. (a) SST anomaly (K); (b) wind-stress anomaly 7 (dyne cm™?); (c) Kelvin wave

amplitude qo; and (d) first Rossby wave amplitude g;. o and ¢z are in nondimensional

units.
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Figure 3. Model-error correlations (based on Q) projected from the wind-stress error:

a) SST—SST; b) SST—qo; ¢) SST—q2; d) go—qo; €) 9o—G2; T) qo—G14; &) G2—q2; h) ¢2—qa; and

1) g2—q14 along the equator. The contour interval is 0.2.
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Figure 4. RMS errors of LKF estimates for uncoupled case: a) SST anomaly; b) go; ¢)

q2.
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case at the end of year 5; same layout as in Fig. 3.






