A Case Study of Tipping Points: The Wind-Driven Double-Gyre Problem

Michael Ghil
Ecole Normale Supérieure, Paris, and University of California, Los Angeles

Please visit these sites for more info.
http://www.atmos.ucla.edu/tcd/
http://www.environnement.ens.fr/
Motivation

• The **North Atlantic Oscillation (NAO)** is a leading mode of variability of the Northern Hemisphere and beyond.

• It affects **the atmosphere and oceans** on several time and space scales.

• Its **predictive understanding** could help interannual and decadal-scale climate prediction over and around the North Atlantic basin.

• The **hierarchical modeling** approach allows one to give proper weight to the understanding provided by the models vs. their realism, respectively.

• Back-and-forth between **“toy”** (conceptual) and **detailed** (“realistic”) models, and between models and **data**.

Outline, Tipping Points II

- The NAO and the oceans’ wind-driven circulation
- The low-frequency variability of the double-gyre circulation
 - bifurcations in a toy model
 - multiple equilibria, periodic and chaotic solutions
 - some intermediate model results
- Atmospheric impacts
 - simple and intermediate models + GCMs
- Some data analysis – atmospheric and oceanic
- Some very promising NAO results
- Conclusions and bibliography
The North Atlantic Oscillation (NAO)

Positive phase

Negative phase

NAO Index

1860 1880 1900 1920 1940 1960 1980 2000
An example of bifurcations and hierarchical modeling: The oceans’ wind-driven circulation

The mean surface currents are (largely) wind-driven

J. Apel (1987), Principles of Ocean Physics
Kuroshio Extension (KE) Path Changes

Monthly paths from altimeter:
Stable vs. unstable periods

Qiu & Chen (Deep-Sea Res., 2009)
“Limited-contour” analysis for atmospheric low-frequency variability

10-day sequences of subtropical jet paths: blocked vs. zonal flow regimes

Kimoto & Ghil, JAS, 1993a
Outline

- Introduction: the NAO and the oceans’ wind-driven circulation
- The low-frequency variability of the double-gyre circulation
 - bifurcations in a toy model
 -> multiple equilibria, periodic and chaotic solutions
 - some intermediate model results
- Atmospheric impacts
 - simple and intermediate models + GCMs
- Some data analysis – atmospheric and oceanic
- Some very promising NAO results
- Conclusions
 - The coupled climate system: is it the tail or the dog?
 - Natural climate variability: a source of decadal predictability?
The double-gyre circulation and its low-frequency variability

An “intermediate” model of the mid-latitude, wind-driven ocean circulation:
20-km resolution, about 15 000 variables

Shallow-water model

\[
\begin{align*}
\frac{\partial U}{\partial t} + \nabla \cdot (uU) &= -g' h \frac{\partial h}{\partial x} + fV + \alpha A \nabla^2 U - RU - \alpha \tau^x \\
\frac{\partial V}{\partial t} + \nabla \cdot (uV) &= -g' h \frac{\partial h}{\partial y} - fU + \alpha A \nabla^2 V - RV \\
\frac{\partial h}{\partial t} &= -(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y})
\end{align*}
\]

where

\[
U \dot{e}_x + V \dot{e}_y = h \mathbf{u} = h(ue_x + ve_y)
\]

\(g'\): reduced gravity \(\equiv g(\rho_2 - \rho)/\rho\)

\(A\): viscosity coefficient \(\equiv 300 \text{ m}^2\text{s}^{-1}\)

\(R\): Rayleigh coefficient \(\equiv 1/200 \text{ day}^{-1}\)

\(\tau^x\): wind stress \(\tau_0 \cos 2\pi / L (\tau_0 = 1 \text{ dyn cm}^{-2} \text{ & } L = 2000 \text{ km})\)

Reduced gravity (1.5-layer) model

The JJG model’s equilibria

Nonlinear (advection) effects break the (near) symmetry: (perturbed) pitchfork bifurcation?

Subpolar gyre dominates

Subtropical gyre dominates

(Exact) Equilibrium state: \((\alpha_A, \alpha_c) = (1.3, 1.2)\)

- linear case -

 \(h(x, y)\)

- nonlinear case -

 \(h_n(x, y)\)

2000 km = 20 x

\(\text{curl } \tau^x = 0\)

Multiple equilibria (nonlinear case): \((\alpha_A, \alpha_c) = (1.3, 0.9)\)

- \(h(t=0) = 0\)

 \(h(x, y)\)

- \(h(t=0) = h_n(x, y)\)

 \(h = \text{ULT} = \text{upper-layer thickness}\)
Time-dependent solutions: periodic and chaotic

To capture space-time dependence, meteorologists and oceanographers often use Hovmöller diagrams.

1. Periodic, with interannual period (2.8 years)

2. Aperiodic (weakly chaotic)
Poor man’s continuation method

Bifurcation diagram

Perturbed pitchfork + Hopf + transition to chaos

Position of Merging Point (km)

$\alpha_A = 1.3$
Interannual variability: relaxation oscillation

0 years 0.4 years 0.8 years 1.2 years

1.6 years 2.0 years 2.4 years 2.8 years
Global bifurcations in “intermediate” models

Bifurcation tree in a QG, equivalent-barotropic, high-resolution (10 km) model: pitchfork, mode-merging, Hopf, and homoclinic
Figure 2. Unfolding of the relaxation oscillations induced by the gyre modes, shown in the plane spanned by the total potential energy of the solution E_p and the difference ΔE between the subpolar potential energy and the subtropical one (see text for details). The orbits of several limit cycles are

Figure 3. Bifurcation diagram of the highly truncated, four-mode model (5), projected onto the $(A_1 + A_2, A_3)$ plane for $\mu = 1$ and $s = 2$. P stands for pitchfork bifurcation at $\sigma = \sigma_P = 7.61$, while $\sigma = \sigma_{HC} = 10.4299$ at the homoclinic bifurcation. The branches of periodic orbits are replaced by several explicitly computed limit cycles.
The double-gyre circulation: A different rung of the hierarchy

Another “intermediate” model of the double-gyre circulation: slightly different physics, higher resolution – down to 10 km in the horizontal and more layers in the vertical, much larger domain, ...

Bo Qiu, U. of Hawaii, pers. commun., 1997
Model-to-model, qualitative comparison

Bo Qui, 2.5 - layer QG model, 1997

modeled transport ($h_1u_1 + h_2u_2$) along 143°E

Westward recirculation
Model-and-observations, quantitative comparison

Spectra of
(a) kinetic energy of 2.5-layer shallow-water model in North-Atlantic–shaped basin; and
(b) Cooperative Ocean-Atmosphere Data Set (COADS) Gulf-Stream axis data

Figure 7. Comparison between low-frequency variability in an idealized double-gyre model and in observations of the Gulf Stream axis. (a) Spectral results for a 2.5-layer SW model for a basin that approximates the North Atlantic in size and shape, using an idealized wind stress. Maximum
Multi-channel SSA analysis of the UK Met Office monthly mean SSTs for the century-long 1895–1994 interval

Marked similarity with the 7–8-year “gyre mode” of a full hierarchy of ocean models, on the one hand, and with the North Atlantic Oscillation (NAO), on the other: explanation?

Figure 8. Phase composites of the reconstructed 7–8-year SST oscillation. The MSSA window length is 40 year and the contour interval is 0.02°C.
Outline

- Introduction: the NAO and the oceans’ wind-driven circulation
- The low-frequency variability of the double-gyre circulation
 - bifurcations in a toy model
 => multiple equilibria, periodic and chaotic solutions
 - some intermediate model results
- Atmospheric impacts
 - simple and intermediate models + GCMs
- Some data analysis – atmospheric and oceanic
- Some very promising NAO results
- Conclusions
 - The coupled climate system: is it the tail or the dog?
 - Natural climate variability: a source of decadal predictability?
Atmospheric impact of mid-latitude SST anomalies: A highly contentious issue

- A quasi-geostrophic (QG) atmospheric model in a periodic β-channel, first barotropic (Feliks et al., JAS, 2004; FGS’04), then baroclinic (FGS’07).
- Marine atmospheric boundary layer (ABL), analytical solution.
- Forcing by idealized oceanic SST front.
Vertical velocity at the top of the marine ABL

- The nondimensional $w(H_e)$ is given by

$$w(H_e) = \left[\gamma \zeta_g - \alpha \nabla^2 T \right],$$

with $\gamma = c_1(f_0 L/U)(H_e/H_a)$ and $\alpha = c_2(g/T_0 U^2)(H_e^2/H_a)$, where H_a is the layer depth of the free atmosphere (\sim 10 km), and ζ_g the atmospheric geostrophic vorticity.

- Two components: one **mechanical**, due to the geostrophic flow ζ_g above the marine ABL and one **thermal**, induced by the SST front.
Evolutive spectral analysis

30-day oscillation

70-day oscillation
Simulate atmospheric response to SODA data over the Gulf Stream region

- Use SST (–5 m) data from the SODA reanalysis (50 years)
- Use the FGS’07 QG model in periodic β-channel
 - baroclinic + marine ABL
- Figure shows NAO index:
 - simulated (solid)
 - observed (dashed)
Concluding remarks

- Tipping points and bifurcations: do they really help?
 - Yes, if properly understood and carefully applied!
- Can we predict them?
 - Yes, depending on the problem and the data!
Some references

Reserve slides
Climate models (atmospheric & coupled): A classification

- **Temporal**
 - stationary, (quasi-)equilibrium
 - transient, climate variability

- **Space**
 - 0-D (dimension 0)
 - 1-D
 - vertical
 - latitudinal
 - 2-D
 - horizontal
 - meridional plane
 - 3-D, GCMs (General Circulation Model)
 - Simple and intermediate 2-D & 3-D models

- **Coupling**
 - Partial
 - unidirectional
 - asynchronous, hybrid
 - Full

Hierarchy: from the simplest to the most elaborate, iterative comparison with the observational data
Modeling Hierarchy for the Oceans

Ocean models

- 0-D: box models – chemistry (BGC), paleo
- 1-D: vertical (mixed layer, thermocline)
- 2-D – meridional plane – THC
 → also 1.5-D: a little longitude dependence
 - horizontal – wind-driven
 → also 2.5-D: reduced-gravity models (n.5)
- 3-D: OGCMs - simplified
 - with bells & whistles (“kitchen sink”)

Coupled 0-A models

- Idealized (0-D & 1-D): intermediate couple models (ICM)
- Hybrid (HCM) - diagnostic/statistical atmosphere
 - highly resolved ocean
- Coupled GCM (3-D): CGCM
Forced 7-year cycle in the FGS’04 model

Slow amplitude modulation of 1 °C in the SST front

Low-energy phase

High-energy phase
Spin-up of atmospheric jet

SST front:

$L_{oc} = 600 \text{ km}$,

$\Delta T = 3.5 \degree \text{C}$,

$d = 50 \text{ km}$

Atmospheric jet

spins up from

$L_a = 2000 \text{ km}$ to

$L_a = 4000 \text{ km}$, much greater speed and strong recirculation
Can we, nonlinear people, help?

The uncertainties might be *intrinsic*, rather than mere “tuning problems”

If so, maybe *stochastic structural stability* could help!
Might fit in nicely with recent taste for “stochastic parameterizations”

The DDS dream of structural stability (from Abraham & Marsden, 1978)