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We study damage propagation in networks, with an emphasis on production-chain models. The
models are formulated as systems of Boolean delay equations. This formalism helps take into
account the complexity of the interactions between �rms; it turns out to be well adapted to
investigating propagation of an initial damage due to a climatic or other natural disaster.
We consider in detail the e�ects of distinct delays and of forcing, which represents external inter-
vention to prevent economic collapse. We also account for the possible presence of randomness in
the links and in the delays. The paper concentrates on two di�erentnetwork structures, periodic
and random, respectively; their study allows one to understand the e�ects of multiple, concur-
rent production paths, and the role played by the network topology in damage propagation.
Applications to the recent network modeling of climate variability are d iscussed.
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1. Introduction and motivation

1.1. Motivation

This paper is dedicated to the contributions of Catherine Rouvas-Nicolis to applying the concepts and
tools of complex systems to a better understanding of weather and climate dynamics. There are two key
connections between the paper and her contributions. First, much of the recent concerns with weather and
climate have to do with possibly deleterious e�ects that global warming and its associated changes in the
distribution of extreme events may have on the economy [Solomon et al., 2007; Ghil et al., 2011]. It is such
deleterious e�ects that we study here, through a Boolean delay equation (BDE) model acting on several
types of production-chain networks.

Second, one of us (M.G.) developed BDEs as the result of reading Katy Nicolis's paper [Nicolis, 1982]
that applied a related methodology, namely Ren�e Thomas's kinetic logic [Thomas, 1979], to an oscillatory
paleoclimate model [K•all�en et al., 1979; Ghil, 1994]. Finally, there is a third, more general connection to
climate dynamics, since network models of climatic teleconnections are gaining in popularity [Tsonis &
Swanson, 2008; Dongeset al., 2009].

1.2. Background

In most economic models, the production system is modeled either as a unique representative producer
| e.g., by using the Cobb-Douglas function [Cobb & Douglas, 1928], as done in the Solow growth model
[Solow, 1956] | or as a set of sectors, in which there is a unique representative producer per sector, e.g.,
in General Equilibrium Models [Arrow & Debreu, 1954]. The real production system, however, can best
be seen as a network composed of �rms that produce di�erent goods and services, and are connected by
links between suppliers and customers. In such a network, �rm j supplies a fraction of its production to
�rm i , which uses this production as an input for its own production function; see [Fig. 1], for instance, in
Section 2.1 below.

Introducing the role of networks in the economic system can lead to complex endogenous economic
dynamics [Helbing et al., 2004]. But the network formalism is also well adapted to study the cascade
e�ects generated by exogenous events; these events are positive in the case of new orders from the market
[Romano� & Levine, 1981, 1986, 1981; Leunget al., 2007; Baket al., 1993; Okuyamaet al., 2004; Barker &
Santos, 2009] and negative in the case of a �nancial crisis [Delli Gatti et al., 2005], of local strikes a�ecting
production [Souma et al., 2001; Weisbuch & Battiston, 2007] or of natural disasters [Hallegatte, 2008;
Henriet, 2007; Henriet & Hallegatte, 2008; Henrietet al., 2010]. In classical economic models | where
the production system is modeled as a unique representativeproducer or as a small set of representative
producers | the e�ects of exogenous events on the numerous �rms have to be averaged over all �rms, or
over all �rms of each sector. Because such e�ects are often highly heterogeneous, and because consequences
and responses are highly nonlinear, this averaging processcan bias the analysis, and hamper the correct
assessment of the consequences of exogenous shocks, whether natural or man-made.

The case of natural disasters is particularly interesting,because disaster impacts are very heterogeneous
and a�ect especially strongly a small set of �rms [Tierney et al., 1997; Webbet al., 2002]. In such cases, the
total economic impact of the catastrophe can be much higher than the direct impacts of the event, because
indirect e�ects that are propagated through supply chains can be large. For instance, an earthquake that
destroys a bridge can cause losses that are much larger than the value of the bridge, because subsequent
impacts on the duration and cost of transportation can impair production in many �rms.

Such results have been reported using input-output models [Leontief, 1986] at the sector level [Halle-
gatte, 2008; Henrietet al., 2010; Lian et al., 2007; Okuyama, 2004; Rose & Liao, 2005] or speci�c network
models [Cho et al., 2001]. To account for heterogeneity at the �rm level, an appropriate input-output
formalism has been developed in [Hallegatte, 2008; Henriet, 2007; Henriet et al., 2010], and used to an-
alyze disaster consequences. This approach has demonstrated that the shape and the structure of the
network play an important role in disaster vulnerability, j ustifying the introduction of network e�ects in
the economic assessment of natural disasters.

The purpose of the present paper is to simplify as much as possible the network formalism, by using
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the 
exible framework of Boolean delay equations (BDEs). The resulting models allow one to go beyond
the simple observation that network structure has an in
uence on the problem, and permit one to analyze
its e�ect on disaster consequences within an idealized economy. We study systematically and in detail
the models, by emphasizing the di�erences in the dynamical behavior between forced vs. free models |
i.e., between externally connected vs. stand-alone models | and between asynchronous vs. synchronous
updating for economic, production-chain networks. Possible applications to climatic networks are also
discussed.

The simpli�cation due to using Boolean variables allows oneto study the e�ects of network topology
and of the di�erent delays involved in the production paths on the total losses due to an initial catastrophe.
We investigate, in particular, the role of the network's connectivity: the e�ect of the multiplicity of products
needed by each industry on the vulnerability of the whole economy, and the e�ects of multiple production
paths from one �rm to downstream production �rms. We are especially interested by the spatio-temporal
patterns of long-term production shortages that arise fromthe generic asynchrony due to variable time
lengths of concurrent production paths.

In fact, the approach is intriguing from the more general point of view of local damage reverberation
across a network, which is found in numerous and diverse �elds of application. In the socio-economic
domain, these �elds include logistics [Baket al., 1993], infrastructures [Haimes & Jiang, 2001], and �nance
[Delli Gatti et al., 2005; Battiston et al., 2007], while in the geosciences they include earthquake dynamics
[Zaliapin et al., 2003a,b; Ghil et al., 2008], forest �res [Spyratoset al., 2007] and river networks [Zaliapin
et al., 2010], as well as climatic variability [Tsonis & Swanson, 2008; Dongeset al., 2009]. Finally, life-science
applications include food webs [Carpenteret al., 1985] and immunology [Kaufmanet al., 1985; Neumann
& Weisbuch, 1992; Perelson & Weisbuch, 1997], among many others. Previous work on such problems
has been restricted, however, to fairly simple network structures | such as ternary trees [Zaliapin et al.,
2003a,b; Ghil et al., 2008], lattices [Bak et al., 1993; Weisbuch & Battiston, 2007; Spyratoset al., 2007],
cartwheels [Delli Gatti et al., 2005; Battiston et al., 2007] or data-based scale-free networks [Henrietet al.,
2010] | and to purely autonomous dynamics; simple random forcing has only been considered in [Zaliapin
et al., 2003a,b] so far.

1.3. This paper

BDEs are semi-discrete dynamical systems, whose discrete variables evolve in continuous time; they have
been introduced about 25 years ago by M. Ghil and colleagues [Dee & Ghil, 1984; Mullhaupt, 1984; Ghil
& Mullhaupt, 1985], and they are related to the kinetic logic of R. Thomas [Thomas, 1979]. Unlike in the
latter, though, the memory of a BDE system can contain more and more information as time goes on; this
fact allows for solutions of increasing complexity, which display deterministically chaotic behavior. This
prediction of BDE theory has been recently demonstrated experimentally in [Zhang et al., 2009].

Apart from their intriguing mathematical properties, BDEs represent a useful tool in modeling complex
systems that are characterized by threshold behavior, multiple feedbacks, and distinct time delays. They
have been successfully applied, for instance, to the study of climate dynamics [Ghil et al., 1987; Wright
et al., 1990; Darby & Mysak, 1993; Saunders & Ghil, 2001], of earthquake physics [Zaliapinet al., 2003a,b],
and of genetics [•Oktem et al., 2003; Gagneur & Casari, 2005]; see [Ghilet al., 2008] for a recent review. The
present work is an important step towards the application ofBDEs to large classes of systems of interest in
economics and in the geosciences; at the same time, it provides insight into the role played by stochasticity
in Boolean-valued network models.

Even though we are using Boolean variables to describe the production of each individual �rm, a
zero value should not be interpreted as the destruction of the production unit: we simply mean that some
shortage has been generated through production interactions. Similarly, a level of one only implies that the
�rm has recovered from a previous state of impaired production. Nevertheless, in the more general setting
of local damage reverberation across a network,x i can represent any form of healthy or damaged site.

In Section 2, we outline the Boolean-valued network models of the economy that we use throughout;
they include free models, i.e. autonomous models of a closed economy, as well asforced models, i.e. non-
autonomous models of an open economy. We moreover introducethe main observables we are interested
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in: the density � (t) of \healthy" �rms, and the total number � (t) of \damaged" ones; this intensive and
extensive quantity, respectively, allow one to characterize the damage propagation. In Section 3, we present
the results for free and forced models of degree one and higher on a periodic network, also referred to as
having a chain topology; see [Fig. 1] below. One distinguishes already in this simple setting between the
case ofsynchronousupdating | i.e., of deterministically chosen, equal delays | and the asynchronous
case,i.e., of randomly chosen delays that are unequal in general. Then,in Section 4, we consider directed
random graphs, thus allowing for randomness in the links,i.e., in the topology, as well as in the delays.
Concluding remarks follow in Section 5, and three appendices provide technical details.

2. The models and their evaluation

2.1. Model formulation

A realistic representation of the economy at the �rm level has to assess both the direct and the indirect
losses due to either a natural or a man-made disaster. Doing so requires taking into account, in particular,
the propagation of a disaster's consequences | both backward and forward in time | by tracking the
avalanches of failures and the ripple e�ects across the chains of suppliers and producers in the network.
For instance, analyses of the Northridge earthquake's impacts on the regional economy [Tierneyet al.,
1997; Gordonet al., 1998] show that a catastrophe can have very heterogeneous repercussions, and that
indirect losses | due largely to damages to the transport inf rastructure system | can be de�nitely higher
than the direct losses themselves. Similar conclusions were obtained by the study of the consequences of
the Loma Prieta and Northridge earthquakes [Webbet al., 2002]. The latter study also showed that the
repercussions can be less severe for �rms that belong to a larger market, and not just to the strictly local
one: this conclusion encourages us to consider economic models that adapt to a catastrophe by interacting
with �rms outside the immediately a�ected region, cf. [Cho et al., 2001].

Important steps towards formulating input-output models [ Leontief, 1986] suitable for realistic damage
evaluations have been taken by S. Hallegatte and colleagues[Hallegatte, 2008; Henriet, 2007; Henriet &
Hallegatte, 2008; Henrietet al., 2010]. As stated in Section 1, we study here BDE models that are highly
simpli�ed in the sense that they only use Boolean-valued variables; on the other hand, they contain the
dynamics of damage propagation, while allowing for unequalpath lengths between �rms in this propagation.
We are neglecting some key ingredients, such as the divisionof the economy into sectors or the choice that
�rms might have between several providers of the same good, even in a strictly local economy. Therefore,
the models highly idealized assumptions do not permit a direct application of their numerical results. These
results, though, can be understood in depth, based on the complementary theories of graphs and of BDEs,
and provide, one hopes, a good starting point for future analysis of more realistic damage propagation
models.

A Boolean variable's null value, x i (t) = 0, is taken to mean that �rm i at time t is impaired and cannot
fully produce, i.e. it is \damaged," while x i (t) = 1 means that it is not impaired, i.e. it is \healthy." More
speci�cally, the impairment can be due either to the �rm bein g itself damaged or to the fact that it lacks
the necessary inputs, since some of its suppliers | or some oftheir suppliers, and so on | were previously
damaged. In this simple way, our BDE models take into accountthe role of the chains of suppliers and
producers in a real economy.

We study networks of N �rms, assumed to be placed at the vertices of a directed graph, also called a
digraph; the digraph will be de�ned by its N � N connectivity matrix A, cf. [Bollob�as, 1998; Bang-Jensen
& Gutin, 2009]. Our interpretation is that A ij = 1 if and only if (i�) part of the output of �rm j (the
supplier) is needed as input for �rm i (the customer); otherwiseA ij = 0. As a �rst step for assessing the
losses due to the propagation of the consequences of a catastrophic event, we analyze the vulnerability of
connected �rms to initial damage to a single �rm. Considering the case of a single initial impairment is
equivalent to studying the \Green's function" of damage propagation [Ghil et al., 2008].

We start in Section 3 by considering a connectivity matrix A with circulant structure, which models a
braid chain of in/out-degree k: A ij = 1 i� i � k � j � i � 1, with x i = x i + N (see [Fig. 1]). In Section 4, we
will study a directed random graph (DRG) or random digraph. We will concentrate on the DRG family
D (N; p) [Karp, 1990;  Luczac & Seierstad, 2009], obtained by generalizing the well-known Erd}os-R�enyi rule
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for an undirected random graph [Erd}os & R�enyi, 1959, 1960, 1961]; in our DRG, each of theN (N � 1)
directed links is present or absent with the same independent probability p 2 [0; 1]. Hence, the elements
f A ij g of the matrix A are random variables, assumed to be independently and identically distributed, with
probability P given by

P(A ij ) =
�

� A ij ;0; i = j ;
p � A ij ;1 + (1 � p) � A ij ;0; i 6= j ;

(1)

where � is the Kronecker delta function. The probability p is related in a straightforward manner to the
mean number of input-output connectionsz, i.e. to the average in/out-degreehki of the resulting digraph,
with z = hki = ( N � 1)p ' Np.

Fig. 1. The braid-chain structure given by a circulant matri x with periodic boundary conditions, in the case of an in/out -
degreek = 2. The size of the network here is N = 14, and the nodes are ordered clockwise. In the synchronousdeterministic
model with equal delays, the position of the origin | always c hosen to be i = 1 | is arbitrary. In the asynchronous case of
random delays, the distinct concurrent paths that connect t wo given nodes do not involve, in general, the same propagation
time, although they might have the same spatial length, in te rms of number of steps along the chain. Unless confusion is
possible, we refer to \path length" as the time it takes to get from a node to another.

The dynamics on the network de�ned by the matrix A = f A ij g is governed by the system ofN BDEs:

x i (t) =
NY

j =1

A ij _ Sj i (t); i = 1 ; : : : ; N ; (2)

here Sj i (t) is the availability of good j at node i . The product
Q

, which runs over all the vertices of the
network, refers to the Boolean `AND' operator ^ , whereas_ denotes the Boolean `OR' operator and(�) is
the Boolean negation.

Notice that, in our highly idealized models, the production x i (t) of �rm i at time t requires the
availability of all the stocks of goodsSj i (t) usually provided by the suppliers f j : A ij 6= 0g to which the
�rm i is connected in the network. In other words, a �rm's production capacity can be impaired either by a
disaster having directly damaged it or because its suppliers have been a�ected by the disaster and cannot
provide the necessary inputs. We will assume that only a single �rm is directly damaged at the beginning,
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Table 1. The input-output table of the stock Sji of a given prod-
uct as a Boolean function of the activities ( x i ; x j ) of the cus-
tomer �rm i and supplier �rm j , in the free models described by
Eq. (3) and in the forced models described by Eq. (4), respectively.

x i x j Sji Free models

0 0 0 j and i inactive, the stock cannot be reconstituted
0 1 1 j active and i inactive, the good is stocked
1 0 0 j inactive and i active, the stock is �nished
1 1 1 j active and i active, the stock is updated

x i x j Sji Forced models

0 0 1 j and i inactive, the stock is supplied from outside
0 1 1 j active and i inactive, the good is stocked
1 0 0 j inactive and i active, the stock is �nished
1 1 1 j active and i active, the stock is updated

so that its production is reduced during a time interval of length � c, and we will look at the propagation
of this initial event.

We consider �rst isolated networks, which we call thefree models, and then networks that interact with
the outside, the forced models; the forcing represents external intervention to prevent economic collapse.
For a free model, the availability Sj i of the good manufactured by �rm j to �rm i is simply delayed with
respect to the production x j by a constant delay � ij according to:

Sj i (t) = x j (t � � ij ); for a free model. (3)

In the presence of socio-economic adaptability | meaning that the local economy of the immediately
a�ected region is not isolated, and that some external rescueinput is available | we assume that the
production stock Sj i of the �rm i becomes again available to �rmj after an impairment time taken, in a
�rst approximation, to be still equal to � ij :

Sj i (t) = x i (t � � ij ) _ x j (t � � ij ); for a forced model. (4)

These two equations, which give the truth table shown in [Tab. 1], complete the de�nitions of the models
given by Eq. (2).

We compare in the following results obtained for equal delays f � ij � � 0g with those for the more
realistic situation of a set T of unequal delaysf � ij g picked at random. We refer to these two situations as
synchronousand asynchronousupdating, respectively. Notice that the latter term is given here a di�erent
meaning from the one usually found in the literature on random Boolean networks [Drossel, 2008]. In our
asynchronous BDE models, the delays are assumed to be integer multiples of the time unit given by � min ,
and to be independently and uniformly distributed in the int erval [� min ; � max ], where � max is also an integer
multiple of � min .

In the numerical computations, we will take � 0 = � min = 1 day and � max = 10 days. Notice that, for a
given set T of randomly selected delays and for a randomly selected set of links | which we will also call
a random network con�guration 
 | the smallest nearest-neig hbor delay,

� � (
 ; T ) = min
i;j

f � ij g; (5)

can be larger than � min , although the probability of this event approaches rapidly zero as the network's
sizeN increases. We summarize in [Tab. 2] the various BDE-on-network models studied in this paper, and
provide in [Tab. 3] a list of the main variables and other symbols used herein.

In order to get a unique solution of either a free model, givenby Eqs. [(1), (2), (3)] or of a forced model,
given by Eqs. [(1), (2), (4)], one has to prescribe the initial values of the set of variablesf x i (t)g in the
interval [0; � init ), where � init = max f � ij g is the largest possible delay, with� init = � 0 for synchronous and
� init = � max for asynchronous updating. We only study here the simple case in which the entire economy
f i : 1 � i � N g starts unimpaired, except for the initial destruction of a single �rm, which is taken without
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Table 2. Overview of the main characteristics of the models studied in Sec-
tions 3 and 4; each box in the table indicates the section where the model
de�ned by the row and column is discussed. In the columns, we label by
Free the free models and by Forced the forced models; the synchronous
case of deterministic delays all equal to � 0 is labeled Sync and the asyn-
chronous, random-delay case is labeledAsync . In the rows, Chain refers
to the deterministic braid chain of [Fig. 1], and DRG to the random di-
graph, with P (A ij ) given by Eq. (1). In the rows, we also distinguish be-
tween single (k = 1), and multiple ( k � 2), in/out-degree in the braid
chain, whereas the models de�ned on the digraph whose average in/out-degree
z = hki is either equal to or larger than one are treated in the same sections.

Free, Sync Free, Async Forced, Sync Forced, Async

Chain, k = 1 3.2 3.3 3.6 3.6
Chain, k � 2 3.4 3.5 3.7 3.8

DRG 4.2 4.3 4.4 4.4

loss of generality to be at the nodei = 1. Notice that this �rm is not de�nitively eliminated form t he
network: we assume instead that it is forced to stop its activity from time t = 0 until t = � c. Hence we will
usually take x i (t) � 1 for t 2 [0; t init ), except for x1(t) = 0 for t 2 [0; � c), with � c � t init . More generally,
one can associate an external function to thex1-variable, i.e. x1(t) ! � (t)x1(t), where � (t) is taken to be
one except fort 2 [0; � c): this allows one to appropriately describe also the case� c > � init .

The possibility of de�ning BDE systems that possess random delays with a given probability distri-
bution was already stated in [Dee & Ghil, 1984], but BDE studies so far have been mainly restricted to
fully deterministic systems. Two exceptions are the results in [Wright et al., 1990], where the ensemble
averaging over BDE solutions with randomized initial data was considered, and in [Zaliapinet al., 2003a,b],
where random external forcing was introduced. We study herein considerable detail not only BDEs with
random delays, but also BDEs on a random graph (cf. Section 4 below), as suggested in [Ghilet al., 2008];
the latter could also be viewed as Boolean networks with distinct delays [•Oktem et al., 2003; Klemm &
Bornholdt, 2005].

In the present paper, the exploration ofstochastic BDEs is limited to the delays T = f � ij g, as well as
the elements of the connectivity matrix f A ij g, being quenchedrandom variables: their values are prescribed
once and for all when de�ning the BDE system. The random con�guration f 
 ; T g so obtained is assumed
here to be constant on the time scale of the system evolution we are interested in. Random evolution in
time of the set of links 
, as well as of the set of delaysT , is left for subsequent study. We note here simply
that | in statistical physics in general and in spin-glass th eory in particular | a system is said to present
quenched disorderwhen some parameters that determine its behavior are randomvariables that do not
evolve with time, i.e.,they are quenched or frozen [M�ezardet al., 1988].

2.2. Evaluation of model behavior

To facilitate the comparison between the results of these models, and to help us draw general conclusions
about damage propagation in economic networks, we introduce here two global quantities that characterize
model behavior. The �rst one of these two macroeconomic observables is the density� (t) of \healthy" �rms,
which is given simply by the average over the numberN of nodes:

� (t) �
1
N

NX

i =1

x i (t): (6)

As noted before [Ghil et al., 2008], the evolution of a single impairment represents the\Green's function"
of damage propagation, and� (t) is just a key property of this Green's function.

For obvious reasons, we will be especially interested in thelarge-time limit, so that we also �nd it
useful to de�ne the asymptotic density:

� 1 = lim
t !1

� (t): (7)
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Table 3. Overview of the main variables and symbols that appear in the paper.

x i (t ) Boolean variable: state of �rm i (more generally, node i ) at time t
N integer variable: total number of �rms, i.e. system size
Sij Boolean variable: stock provided by supplier j to customer i

A =
�

A ij
	

N � N connectivity matrix A, whose elements are the Boolean variablesA ij

 =

�
A ij

	
random network con�guration, i.e., set of random links

T =
�

� ij
	

the N � N set of delays � ij
D (N; p) DRG family of size N � N , whose links are present with probability p
G(N; p) undirected random graph of size N � N ; links have probability p

k, kin , kout degree, in-degree, out-degree
z = hki mean connectivity in random networks

� c duration of the initial event
� 0 delay and time unit in the synchronous models

� min smallest delay and time unit in the asynchronous models
� max largest delay in the asynchronous models
� init largest possible delay, depending on the model

� � (
 ; T ) smallest nearest-neighbor delay
� (t) external function
$ period of the asymptotic solution
� total number of impaired �rms
� density of fully active �rms

� 1 asymptotic time limit of the density
� $

1 asymptotic time limit of the density averaged over the perio d
T0 e�ective transient: time for � to reach � 1

T$ transient: time that system solutions take to reach the asym ptotic regime, T0 < T $

v signal velocity
Cij path joining nodes i and j
Sc connected component of sizeSc = scN
Sgc giant connected component of sizeSgc = sgcN
r fraction of nodes outside the giant connected component

Ssc giant strongly connected component of size Ssc = sscN
I giant in-component of size I = sI N
O giant out-component of size O = sO N
W giant weakly connected component of sizeW = sw N
� other giant component de�ned as � = W r (I [ O )
zc critical value of the mean connectivity
� Kronecker delta function

(�) Boolean negation (unary operator)
_ Boolean AND (binary operator)
^ Boolean OR (binary operator)
5 Boolean XOR (binary operator)

h(�)i average over the quenched random con�gurations

In the presence of asymptotically periodic solutions, one obviously considers the period average:

� $
1 = lim

t !1

Z t+ $

t
� (t0)dt0: (8)

The quantities � 1 or � $
1 represent the fraction of the economy that �nally recovers from the initial damage,

i.e. a value of � 1 equal to one means that the economy will recover completely,whereas on the contrary
� 1 = 0 implies that lasting damage propagates across the entirenetwork. Within our framework, it will
be possible, in particular, to understand the behavior of the asymptotic density in the case of largeN and
of N ! 1 .

The second macroeconomic observable of interest is the total number � (t) of impaired �rms at time t.
In the thermodynamic language of statistical physics,� (t) is an extensive variable, while� 1 (t) is intensive.
The observable � (t) gives directly the total losses, at a given time, due to the initial destruction of the
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single �rm at i = 1; hence � (t) is also a measure of damage spreading, due to its propagation through the
network. We have

� (t) �
NX

i =1

x i (t): (9)

Notice that the average density � (t) of \healthy" �rms and the total number � (t) of impaired �rms are
related by

� (t) = 1 �
1
N

� (t): (10)

We will also study three highly nonlinear functionals with t he physical dimensions of time: the e�ective
transient T0, de�ned as the time that the density takes before reaching its asymptotic � 1 value; the transient
T$ , de�ned as the time elapsed before the solutions become periodic; and the period $ of the solution
itself, possibly equal to zero if the solution is constant. Notice that, since the delays here are rationally
related, the asymptotic solutions of the BDE system (2) are necessarily constant or periodic, because of
general results on BDEs [Ghilet al., 2008; Dee & Ghil, 1984; Mullhaupt, 1984; Ghil & Mullhaupt, 1985].
Nevertheless, we will �nd very long transients and periods and, moreover, one can haveT$ � T0.

In the presence of randomness | in the delays, in the elementsof the connectivity matrix or in both
| these quantities do also depend upon the particular con�gu ration f 
 ; T g, and the system's behavior is
better captured by their averagevalue. In the case of the density, one has:

h� (t; 
 ; T )i �
Z

dT d
 P(
 ; T )� (t; 
 ; T ): (11)

This average can be computed numerically by considering a large enough numberNs of random con�g-
urations f 
 ; T g: in fact, these are obtained in agreement with their corresponding P(
 ; T ) = P(
) P(T ),
i.e. with uniform probability in the interval [ � min ; � max ] for the random-delay case of asynchronous updat-
ing, and with probability given by Eq. (1) for the random link s of the DRG. Generally, we will spell out the
dependence of an observableO upon the con�guration, by labeling it O(
), O(T ) or O(
 ; T ), accordingly,
and we will label its average value, computed analogously tothe average density in Eq. (11), byhO(
) i
and so on.

3. Braid-chain models

3.1. Network topology

We consider here the network topology of a braid chain, whichis obtained from an N � N connectivity
matrix A with circulant structure: A ij = 1 i� i � k � j � i � 1, with x i + N = x i . Here one has the same
in/out-degree k for all the nodes: each �rm needs as inputs part of the goods manufactured by the previous
k �rms (its suppliers), whereas the outputs it produces are used by the k next �rms (its customers); so
each �rm is linked to 2k other �rms.

The resulting deterministic topology is strongly connected: starting from any node one �nds at least
one directed path along which the signal can propagate to anyother node, and in fact there are multiple
concurrent paths as soon ask � 2. Most of these paths have the same length in the purely deterministic
case of synchronous updating, whereas their lengths usually di�er for asynchronous updating. In other
words, randomly chosen delays allow one to model the distinct times that damage propagation along the
concurrent production paths may take. The example in [Fig. 1] has an in/out-degree ofk = 2.

When A is a circulant matrix, the equations for each x i in system (2) simplify to yield:

x i (t) =
kY

j =1

x i � j (t � � i;i � j ); (12)

for the free model de�ned by Eq. (3), and

x i (t) =
kY

j =1

x i (t � � i;i � j ) _ x i � j (t � � i;i � j ); (13)
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Fig. 2. Time evolution of the state of the 10 nodes of the free model on a braid chain, with k = 1, after an initial perturbation
of node i = 1. Each Boolean variable x i (t ) is plotted as a function of t : it is a piecewise constant function alternating between
0 and 1. The plot for each node i is shifted along the y axis, to help visualize the wave that propagates across the network.
(a) All the delays are equal to � 0 = 1 day, the duration of the initial perturbation is � c = � 0=2 = 0:5 day, and the period of
the wave is $ = N� 0 = 10 days. (b) A particular evolution for a given choice T of random delays, with f � i;i � 1g uniformly
distributed between � min = 1 day and � max =10 days: the resulting period is $ (T ) = 47 days; here the duration of the initial
perturbation is � c = � min =2.

for the forced model de�ned by Eq. (4), respectively. The study of BDEs for this highly simpli�ed topology
has two advantages: (i) it allows one to compare numerical with analytical results; and (ii) it facilitates a
�rst glimpse at the substantial di�erences between free and forced models, on the one hand, and between
synchronous and asynchronous forcing, on the other.

3.2. Synchronous free model with k = 1

The free model on a braid chain, with a single input-output connection for each node,k = 1, and with
delays that are all equal to the same time unit � 0, is an example of aconservativesystem of BDEs [Ghil
et al., 2008; Mullhaupt, 1984; Ghil & Mullhaupt, 1985]. Its dynami cs is periodic right away, without any
transient, for all initial states. The model obeys the set ofequations:

x i (t) = x i � 1(t � � 0); i = 1 ; : : : ; N: (14)

The initial impairment of the single �rm at i = 1 is usually represented, for a duration of � c � � 0, by the
appropriate choice of the initial values: one takesx i � 1 for t 2 [0; � 0), except for x1(t) = 0 in the interval
[0; � c). As stated in Sec. 2.1, to describe both the case� c � � 0 that we treat here most often, and the case
of � c > � 0, one can replacex1(t) by � (t)x1(t), and let � 1(t) = 0 for t 2 [0; � c).

The spatio-temporal pattern of the solution displays a wave of nodes taking the value zero for a
duration � c, one after the other; this wave propagates periodically across the chain, as in the example given
in [Fig. 2a]. Moreover, 8� c < � 0, the evolution shows no transient and the period of the solution is $ = N� 0.
For � c > � 0, the starting perturbation cannot be absorbed into the init ial values, and the transient length
is T0 = T$ ' � c � � 0. Finally, we notice that, for � c = � 0, the density is constant, � (t) = � 1 = 1 � 1=N,
whereas for� c < � 0 it is a piecewise constant function that alternates betweenthe values 1 and 1� 1=N,
with period $ = � 0.

In fact, this system is almost exactly the same as the model introduced in [Ghil et al., 2008] as a �rst
step towards formulating the BDE equivalent of hyperbolic partial di�erential equations. In that paper,
the simplest wave equation was discretized on a one-dimensional lattice, and the node index i played the
role of the discretized coordinate; see Eq. (32) in [Ghilet al., 2008]. Results were given for the evolution
starting from an initial state in which only the variable associated with a single lattice point | located at
the origin of the spatial coordinate | was equal to one, with � c = � 0, while all other nodes carried zero
values. These results were precisely the complement of those shown in [Fig. 2a], with a \soliton" of unit
values propagating along the lattice (not shown in [Ghil et al., 2008]).
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This dynamics implies that, on the one hand, the damage does not spread to a larger number of
�rms but, on the other hand, the activity never recovers completely: each impaired �rm gets back to the
una�ected state after the time � c but, at the same time, its production shortage reaches its unique customer,
with a constant delay � 0. This result may look unrealistic, and in fact it is linked to one of our simplifying
assumptions, namely the discretization of �rm production capacity, with no possibility for overproduction
or production rescheduling. Nevertheless, notice that� 1 = 1 � 1=N, which means that, for a unit initial
damage, the whole economy turns out to be still quite \healthy", apart from corrections of order 1=N,
which are negligible in the large-size limit.

3.3. Asynchronous free model with k = 1

In the free model on a braid chain, with k = 1, the e�ect of random, but integer-valued delays can be
worked out explicitly. One gets

x i (t) = x i

0

@t �
N � 1X

j =0

� i � j;i � j � 1

1

A (15)

and �nds, accordingly, that the solution is periodic right a way for any duration of the initial perturbations
� 0 � � � (T ); here � � (T ) equals the smallest nearest-neighbor propagation length, de�ned as in Eq. (5), and
it is usually equal to � min .

Fig. 3. Evolution of the average fraction h� (t ; T )i of fully active �rms, in the asynchronous free model on a brai d chain, with
k = 1; here � c = � min . We compare the behavior of networks having N = 10, 20, 50 and 100 nodes with the one expected
from the CLT (lines); see Eq. (52) in Appendix A. (a) Detailed behavior at short times; (b) model behavior over the entire
time window calculated. The data are averaged over N s di�erent random sets of delays T , with N s taken large enough to give
errors of the order of the point size in the plot.

The spatio-temporal pattern of the solution is still a periodically propagating wave of nodes that take
the value zero for a duration of � c, one after the other, cf. [Fig. 2b]; moreover,8� c � � � (T ), the evolution
shows no transient, as in the synchronous case for� c � � 0. The di�erence is that the propagation time of the
perturbation, from a supplier i � 1 to its customer i , is now given by the quenched random variable� i;i � 1.
Hence the period$ (T ) of the solution, | depending upon the given random con�gura tion of delays T |
is equal to the sum of these delays along the whole chain, withan average value ofh$ (T )i = N (� max +1) =2.

The average densityh� (t; T )i can be computed analytically by applying the central limit t heorem
(CLT), cf. Appendix A. In [Fig. 3], we compare the expected behavior for � c = � min , given by Eq. (52) in
the appendix, with the numerical results, for di�erent netwo rk sizes N : at short times, one can observe
the predicted jumps at t = � max . At long times, there are corrections to the expected behavior, since the
same variables appear more than once in the sums of randomly selected delays that are being considered;
nevertheless, the average asymptotic value of the density,h� 1 (T )i , clearly approaches unity in the limit of
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Fig. 4. Time evolution of the state of the 10 nodes of the synchronous free model on a braid chain, with k = 2, after an initial
perturbation of node 1. Same plotting convention as in [Fig. 2]. (a) The duration of the initial perturbation is � c = � 0 = 1
day; (b) � c = � 0=2 = 0:5 day. See text for details.

large system size, with corrections of order 1=N; more precisely,h� 1 (T )i ' 1 � 0:2=N, in good agreement
with Eq. (54) of Appendix A.

We stress therefore that in these free models on a braid chainwith k = 1, the choice of updating,
whether synchronous or asynchronous, is relatively unimportant, and a small initial damage has a negligible
e�ect on the whole economy, when looking at a large numberN of �rms.

3.4. Synchronous free model with k � 2

As soon as the numberk of connections is larger than one, the dynamics of the free model on the braid
chain turns out to be dissipative [Mullhaupt, 1984; Ghil & Mullhaupt, 1985; Ghil et al., 2008]. In simple
terms, one expects OR operators to favor a steady state withx i � 1, while AND operators favor such a
state with x i � 0. In fact, for synchronous models of cellular-automaton type, the propagation of 0 across
networks that are characterized by the exclusive presence of AND operators is well documented [Weisbuch,
1991; Wolfram, 1994].

General results on BDEs [Mullhaupt, 1984; Ghil & Mullhaupt, 1985; Ghil et al., 2008] establish that
the asymptotically stable solution is the state in which the whole economy is attained by the consequences
of the initial damage. Therefore the con�guration x i � 0 is reached in �nite time for any duration � c � � 0
of the starting perturbation; see [Fig. 4a]. This result canbe interpreted in terms of lack of 
exibility in the
system's behavior, since thek di�erent inputs to a given �rm are linked by AND operators alon e. Besides,
the system is isolated and the topology of the deterministicnetwork is strongly connected.

To analyze the behavior in [Fig. 4a] more closely, let us start the discussion from the case� c = � 0,
where � 0 = 1 day, and assume that in the interval [t; t + 1) there are � (t) = n impaired �rms in consecutive
positions along the chain,i.e., x i (t) = 0 for i 2 [ihr (t); imin (t)], with ihr (t) = imin (t) + n � 1 and n � N .
Imagine now a clock that, at time t, has its hour-hand marking the position ihr (t) of the impaired �rm
nearest to the origin, while the minute-hand marks the position imin (t) of the one farthest from the origin.
At each time step t0 = t + 1, the �rms in the next k positions (with k � N ) after imin (t) will be impaired,
since at least one of the stocks that they need is not available; henceimin (t0) = imin (t) + k.

The �rst �rm in the sequence does recover its una�ected state, since all its suppliers are fully active;
henceihr (t0) = ihr (t) + 1. In other words, both the hour-hand and the minute-hand move with constant
velocities, given respectively byvh = 1 and vm = k; therefore the width of the set of \damaged" �rms
increases itself with constant velocity, and correspondingly one gets� (t0) = � (t) + ( k � 1). Notice that this
description is correct, in particular, when a single �rm is damaged in the �rst time interval, as assumed
herein.

The same argument can be applied again, at timet = t0, starting from the new sequence of states,
and so on. It follows that the evolution will stop after the tr ansient time T0 = T$ , when the minute-hand
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catches up with the hour-hand, the former having gone aroundthe chain one more time than the latter:
the system has attained the asymptotically stable steady state x i � 0, and the economic activity can no
longer recover at all. The result is unchanged if, in the lasttime step of the transient, the minute-hand
passes the hour-hand, sincex i = 0 also describes a shortage in the production of �rmi itself, aside from
the lack of goods to be provided by other �rms. Moreover, during the transient, each �rm can recover at
most once.

To summarize, � (t) increases linearly with t until it reaches the system sizeN ; correspondingly, for
an initial perturbation that destroys the production of one �rm for a duration � c = � 0 = 1 day, � (t) =
1 � 1=N � (k � 1)t=N for t . T0 and � (t) = � 1 = 0 for t > T 0, where the length of the transient is given
by:

T0 '
N � 1
k � 1

� 0: (16)

These results are con�rmed by the analysis given in AppendixB, where � (t) is computed explicitly. More-
over, when considering� c > � 0, for reasonable values of� c � k � N , one has the same kind of behavior
after roughly the �rst � c=�0 time steps: for larget, the damage-spreading velocity is constant and equal to
k � 1, and the length of the transient is still of order N=k.

For � c < � 0, a typical solution is shown in [Fig. 4b]. Its spatio-temporal pattern clearly indicates that
the damage spreads, from the initially damaged �rm, across the whole network. Taking

x1(t) =
�

0 for t 2 [0; � c);
1 for t 2 [� c; � 0 = 1) ; (17)

the asymptotic steady state is periodic in space, with a period T$ = 1, and all the �rms are synchronously
impaired only in the �rst � c part of each period; this periodic state is reached after a transient of length
given again by Eq. (16). Notice that, in this case, the asymptotic density � 1 is a piecewise constant function
that alternates between the values zero and one with period� 0 = 1 day.

3.5. Asynchronous free model with k � 2

Notice �rst that, in this case, the damage cannot spread moreslowly than in the particular case in which all
the delays are equal to� max : it follows that the state x i � 0 is asymptotically stable also for asynchronous
updating, and that it is reached no later than after a transient T0(T ) = T$ (T ). This is certainly the case
as soon as� c � � max ; in fact we �nd that it is usually so as soon as � c � � min .

Nevertheless, concurrent paths with the same space length along the chain do not usually have, in this
case, the same time length, since di�erent random variables appear now in the sums of the intervening
delays. Hence the spatio-temporal pattern of the solution is more complex, as shown in [Fig. 5]. In particular,
for � c < � max , each �rm can be impaired and recover more than once.

Since the delays are independently and identically distributed along the whole chain, one can argue
that, in the limit 1 � t � T0(T ), the damage spreads with constant average velocityv: the lower bound
on this quantity can be easily obtained, following the discussion in the previous Section 3.4, by taking all
the delays equal to � max . The corresponding upper bound is obtained by setting all the delays equal to
� min ; hence (k � 1)=�max � v � k � 1: As we are going to show, because of the network structure and of
the variables being linked by AND operators, of these two bounds, the upper bound is usually a de�nitely
better approximation to the average velocity than the lower one, and one can obtain a much better lower
bound, too.

To clarify this point, we use once again the clock-hand analogy, with the hour-hand marking the
position ihr (t) of the impaired �rm nearest to the origin and the minute-han d the position imin (t) of the
impaired �rm farthest from it: the key ingredients are that t he network is a braid chain and that a �rm
is \damaged" as soon as a single one of thek stocks it needs is unavailable. Therefore, in the long-time
limit, for 1 � � max � k � N , the average velocity of the hour-hand is negligible, and most of the region
between the origin and the minute-hand position, imin (t), is occupied by impaired �rms. In other words,
and mixing metaphors, the long-term dynamics is dominated by the \hare" that outruns the \tortoise."
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Fig. 5. Time evolution of the state of the 10 nodes of the asynchronous free model on a braid chain, with k = 2, after an
initial perturbation of node 1. Same plotting convention as in [Fig. 2] and [Fig. 4]. (a) The duration of the initial pertu rbation
is � c = � min = 1 day; and (b) � c = � max . This yields transients of length 35 days and 33 days, respectively.

In this limit, one can evaluate rather accurately how far the hare goes in one time step� min = 1, i.e.,
the approximate average velocityv� of the signal from a given supplierj to its farthest customer i for which
� ij = 1. At most, the signal can travel up to i = j + k with probability P(� j + k;j = 1) = 1 =�max . Generally, the
probability that it moves a distance at most l is obtained by taking � h;j > 1 for h = j + k; j + k� 1; : : : ; j + l+1
and � j + l;j = 1. To get the average distance, one has to sum all possible values l = 0 ; 1; : : : ; k, multiplied by
the corresponding probability. Here i = j + l is the farthest reachable point, and it follows that

v� =
kX

l=0

l
� max

�
1 �

1
� max

� l � k

' k � (� max � 1); (18)

where we used the two identities
1X

l=0

� l =
1

1 � �
;

1X

l=0

l � l = �
d
d�

1
(1 � � )

; (19)

with � = (1 � 1=�max ). The result in Eq. (18) is still an underestimate for the e�ective average velocity in
the long-time limit, since we have neglected here corrections of order � k that augment v further. Moreover,
we have also omitted the fact that signal can go even faster inmore than one time step.

Still, we get fairly accurate bounds on the average signal velocity v:

k � (� max � 1) � v � k � 1; (20)

here the lower boundvmin = v� is obtained by using the hare argument, while the upper one,vmax , results
from the particular case in which all the delays equal� min . Based on the form of both these estimates, we
expect the average densityh� (t; T )i to be approximately linear in time, with 1 � (1=N) � vmax t=(N � 1) <
h� (t; T )i < 1 � vmin t=N . Numerical results are presented in [Fig. 6] and are in good agreement with this
expectation.

A di�erent approach is worked out in Appendix B, where the average number of impaired �rms is
explicitly computed as a function of the probability for the signal to have propagated byl positions in t
time steps, cf. Eq. (61). This analysis con�rms that the average density is linear over a large time window,
and it allows us to predict the e�ective slope.

In [Fig. 6], we also consider delays that depend only upon thecustomers,� ij = � (i ), or only upon the
suppliers, � ij = � (j ); here f � (i ) : 1 � i � N g and f � (j ) : 1 � j � N g are, as usual, uniformly distributed
in the interval [ � min ; � max ]. We get the same, slightly slower, average signal velocityin these last two cases.
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Fig. 6. The average density h� (t; T )i as a function of time, in the asynchronous free model on a braid chain, after an initial
perturbation of node 1 of duration � c = � min . The network size is N = 10 000, and the in/out-degree is k = 20; the average
is taken over N s = 100 di�erent con�gurations T of the delays. The legend distinguishes between delays that(i) depend only
upon the customer, � ij = � (i ); (ii) only upon the supplier, � ij = � (j ); and (iii) upon both of them, � ij = � (i; j ). We compare
the numerical results with the lower and upper bounds on the l inear behavior, k � (� max � 1) � v and v � k � 1, cf. Eq. (20),
and with the approximate prediction of Eq. (61) in Appendix B . See text for details.

This slowing down can be qualitatively explained by the observation that there is a smaller number of
propagation paths of di�erent time lengths and thus less of anopportunity for a \runaway hare."

We checked that the observed linear decay in the density of healthy sites and the agreement with the
theoretical expectations do not depend upon the particularchoice of model parameters. Moreover, as soon
as � c � � min , the average density only depends upon� c roughly during the �rst � c time steps. Clearly, these
results imply that h� 1 (T )i = 0 in the present model as soon as� c � � min , and that the average transient
hT0(T )i = hT$ (T )i is bounded between approximately (N � 1)=(k � 1) and � N=[k � (� max � 1)].

On the other hand, for � c < � min , one �nds the same kind of asymptotic solution as in the previously
considered synchronous free model withk � 2. Namely, for � c < � 0, one obtains only periodic solutions of
period $ = � min , with all the �rms simultaneously impaired in the �rst part o f the period, of length � c.
In fact, this peculiar kind of asymptotic solutions can appear also for � min � � c < � max , since there are
con�gurations T of the delays in which the shortest nearest-neighbor propagation path is � � (T ) > � c, and
the argument given in Section 3.4 does apply. Nevertheless,as already noted there, the probability of such
a set T = f � ij g rapidly approaches zero for increasingN values.

3.6. Forced braid-chain models with k = 1

We now turn to the study of forced models on a braid chain with in/out-degree k = 1, as de�ned in
Eq. (13). When the updating is synchronous, the equation foreachx i reduces to

x i (t) =

8
<

:

N � 1X

j =0

x i � j [t � (j + 1) � 0]

9
=

;
_ x i (t � N� 0); (21)

the sum here refers to Boolean addition,i.e. to the Boolean OR operator _ . For asynchronous updating
the resulting equation becomes

x i (t) =

2

4
N � 1X

h=0

x i � h

0

@t �
hX

j =0

� i � j;i � j � 1

1

A

3

5 _ x i

0

@t �
N � 1X

j =0

� i � j;i � j � 1

1

A ; (22)



May 13, 2011 15:57 BC_MG_SH_GW-BDE_Econ-IJBC_v


16

Fig. 7. Time evolution of the state of the 10 nodes of a forced model on a braid chain, with k = 1, after an initial perturbation
of node 1. Same plotting convention as in [Fig. 2] and other similar �gures: (a) synchronous, and (b) asynchronous case. The
duration of the initial perturbation is taken to be � c = 2 � 0 = 2 days and � c = h� ij i = 5 :5 days, respectively; hence the solutions
are not periodic right away in either case. See text for detai ls.

with the propagation times along the paths given by the corresponding sums of random� ij 's.
The models' dynamical behavior di�ers according to whether:

� The initial perturbation's duration, � c, is shorter than or equal to the shortest nearest-neighbor propagation
path, which in turn means that:

{ � c � � 0 in the synchronous model; or
{ � c � � � (T ) in the asynchronous one. Note that the probability of � � (T ) > � min becomes rapidly negligible

in the limit of large N .

In this case, the solutions are immediately periodic, like those of the corresponding free models of Sections
3.2 and 3.3; see again [Fig. 2]. One observes a wave of nodes that take the value zero, for a duration � c,
one after the other; this wave propagate across the spatio-temporal pattern. The period $ is given by the
sum of the delays along the whole chain, namely:

{ $ = N� 0 for equal delays; and
{ $ (T ) =

P N
i =1 � i;i � 1, with h$ (T )i = N (� max + 1) =2, for randomly selected ones.

� The initial-damage duration � c is longer than the shortest nearest-neighbor propagation path, i.e. � c > � 0
or � c > � � (T ) in the synchronous and asynchronous model, respectively.As shown in [Fig. 7], the solutions
here become periodic only after a transientT0 > 0: when the �rm in position i is reached by the wave of
damage, its activity is a�ected for a duration that lasts:

{ no longer than � 0, for equal delays; and
{ no longer than � i;i � 1, for randomly selected ones.

Hence the transient is short for equal delays | one �nds T0 = T$ ' � c | whereas it can be of the order of
the time that the wave takes to propagate across the whole network, i.e. of the period $ of the solution,
for randomly selected ones. The asymptotic periodic solutions are the same:

{ as for � c = � 0 in the synchronous model; and
{ as for � c = � � (
) in the asynchronous one.

Note that the asymptotic density � 1 equals 1 in the large-N limit in all of these cases, with corrections of
order 1=N, as in the corresponding free models.
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3.7. Synchronous forced model with k � 2

The behavior of the forced model on a braid chain, with in/out-degreek � 2, can be described in detail
when the delays are all equal to� 0; Eq. (13) then becomes:

x i (t) = x i (t � � 0) _

2

4
kY

j =1

x i � j (t � � 0)

3

5 : (23)

In this case, the �rm i maintains its production, as usual, if all its suppliers were fully functional at the
previous time step, but also if some of them were impaired andi itself was impaired during the previous
time interval: the production is thus recovered after one time step of length � 0, thanks to the external
input.

Fig. 8. (a) Time evolution of the state of the N = 10 nodes of the synchronous forced model on a braid chain, with k = 2,
after an initial perturbation of node 1; same plotting conve ntion as in [Fig. 2] and other similar �gures. (b) Density � (t ) as a
function of time in the same type of model, for a network size o f N = 10 000; the values k = 20; 50; 100; 200 of the in/out-degree
are given in the panel legend. In both panels, we take a duration of the initial damage of � c = � 0 = 1 day.

Let us take for simplicity N equal to a multiple of k, and a duration of the initial perturbation of
� c = � 0. After the �rst time step, there are k �rms in consecutive positions along the chain whose activity
is simultaneously impaired; at the subsequent time step, these �rms recover but the damage propagates to
the next k �rms.

In other words, in this model, as soon ast > 1, both the hour-hand and the minute-hand move with
the same constant velocityv = k: the damage does not spread, but the activity never recoverscompletely.
Correspondingly, the asymptotic solution is periodic right away, with period $ = N=k, and the density is
constant, � (t) = � 1 = 1 � k=N, as illustrated in [Fig. 8].

For � c > � 0, the behavior is the same, apart from the fact that the solutions are not periodic right
away: there is a very short transient T0 ' � c in this case. For � c < � 0, one still �nds a propagating wave
of k impaired �rms in consecutive positions along the chain; nevertheless, their activity is simultaneously
impaired only in the �rst part, having length � c, of the time step. The situation is similar to the one
encountered in the same case in free models,i.e. it is the behavior of the initially impaired �rm that
propagates across the network, cf. Eq. (17).

While no complete breakdown of the economy occurs, the comparison of the results in this subsection
with the previous Section 3.6 clearly shows that higher connectivity in a production chain can lead to a
less favorable outcome, with more �rms being impaired in thelong run. This result can be explained by the
fact that | at least for the present model formulation | a larg er number of connections does not lead to
risk sharing, since a single impaired supplier su�ces to stop a �rm's production. This assumption amounts
to saying that each supplier provides a di�erent type of goodsor services to a given �rm, and that one of
its suppliers cannot compensate for the loss of another one.In such a situation, a �rm that depends on
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several suppliers has a higher risk of being indirectly a�ected by a shock, whether natural or man-made.

3.8. Asynchronous forced model with k � 2

In the presence of randomly selected delays, external intervention on a braid chain with k � 2 in/out-degree
renders model behavior considerably more complex. The solution for a typical set of delays T , after an
initial perturbation of duration � c = � min , is shown in [Fig. 9]: intriguingly, despite the relatively small
network size N = 10 and the small degreek = 2 under consideration, no periodicity is reached over the
fairly long time intervals studied.

Fig. 9. Time evolution of the state of the 10 nodes of the random forced model on a braid chain, with k = 2, after an initial
perturbation of node 1. Same plotting convention as in [Fig. 2] and in other similar �gures. As usual, we look at a typical
con�guration T of randomly selected delays, uniformly distributed betwee n � min = 1 day and � max =10 days. The duration of
the initial perturbation is � c = � min . Notice that the solution does not display any periodicity i n the fairly long time window
displayed.

Since the delays are integer multiples of� min , the asymptotic solution of system (2), for a given set of
delays T is either constant or periodic, because of mathematically rigorous results on BDEs [Ghil et al.,
2008; Mullhaupt, 1984; Ghil & Mullhaupt, 1985]. Nevertheless, for irrationally related delays, BDEs can
have solutions of increasing complexity, which display a number of jumps per unit time that increases
polynomially with time. Such peculiar behavior occurs, in particular, in the case of conservative systems
with rationally unrelated delays.

This behavior is exempli�ed, at its simplest, by the scalar BDE [Dee & Ghil, 1984; Ghil & Mullhaupt,
1985]

x(t) = x(t � � ) 5 x(t � 1); (24)

where � 2 (0; 1) is irrational, and 5 is the `XOR' operator, for which x 5 y = 1 i� x 6= y. An aperiodic
solution obtained with a set Tirr of delays can be approximated with prescribed accuracy, forincreasingly
long times, by the periodic solutions of nearby BDEs systemswith the same Boolean operators but with
rationally related sets of delaysTn . The latter approximate better and better the former, as Tn ! T irr [Ghil
et al., 2008; Ghil & Mullhaupt, 1985].

Though a more careful analysis would be necessary in order toextend these results to the present case,
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we notice that Eq. (13), which describes our forced models ona braid chain, is equivalent to:

x i (t) =
kX

j =1

x i (t ij ) 5 x i � j (t ij ) 5 [x i (t ij ) � x i � j (t ij )] (25)

where we de�nedt ij := t � � i;i � j . The equivalence is due to the Boolean relationsa _ b = a^ b= a5 b5 (a�b),
and it shows that the system under consideration ispartially linear in the BDE terminology of [Ghil et al.,
2008; Ghil & Mullhaupt, 1985], i.e. that it contains a conservative subsystem. This suggests that the model
might approximate, with an accuracy depending on the particular T -con�guration, similar sets of BDEs
with delays that are incommensurable, and whose solutions thus display chaotic behavior.

In order to better characterize our numerical �ndings, we numerically study the following three quanti-
ties: the transient T$ (T ); the period $ (T ) of the asymptotic solution; and the period-averaged asymptotic
density � 1 (T ) of fully active �rms. According to Eq. (8),

� 1 (T ) =
1
$

Z T$ + $

T$

� (t; T )dt; (26)

where T$ = T$ (T ) and $ = $ (T ). Notice that | in the models considered so far, and in partic ular in
the free models with k � 2 studied in Sections 3.4 and 3.5 | T$ (T ) = T0(T ), where T0(T ) is the time
that the density � (t; T ) takes to reach the asymptotic value� 1 (T ).

Fig. 10. Probability distributions for the asynchronous fo rced model on a braid chain with k = 2. The results pertain to the
solutions of small systems ofN = O(10) equations, and are obtained from N s = 1000 di�erent sets of delays T . (a) Probability
distribution P(T$ (T )) of the transient; (b) probability distribution P(� 1 (T )) of the period-averaged asymptotic density of
\healthy" �rms. Panel (a) uses log-log coordinates, in orde r to emphasize that the probability P (T$ (T )) is still signi�cant
even at very large values. See text for details.

These quantities can be determined with high accuracy for relatively small system sizesN . 12. We
present in [Fig. 10] our results on the probability distributions P(T$ (T )), and P(� 1 (T )), as obtained
by considering Ns = 1000 sets T of random delays; the behavior ofP($ (T )) is very similar to the one
displayed by P(T$ (T )).

The most striking feature in the �gure is that both the transi ent T$ (T ) and the period $ (T ) of the
solutions can increase very rapidly with the network sizeN . In order to better visualize this, we have
plotted P(T$ (T )) on a log-log scale in [Fig. 10a]) and �nd that | in systems of N = 12 nodes | it is not
vanishingly small even for values of the transientT$ (T ) as large as 106 (in units of � min ).

Actually, we found that the average length of the transient diverges exponentially with N , hT$ (T )i /
exp(const�N ), and that, at least for the N values under consideration, the average periodh$ (T )i displays a
similar behavior. Such an exponential increase is also characteristic of the so-called chaotic regime observed
in random Boolean networks [Drossel, 2008; Kau�man, 1993; Weisbuch, 1991], in which the delays are all
equal, but it is the link con�guration 
 that is randomized.
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The probability distribution P(� 1 (T )) of the asymptotic density � 1 (T ) of fully active �rms, averaged
over the T -dependent period$ (T ), is shown in [Fig. 10b] for several values ofN � 12. It turns out to be
roughly bell-shaped, and it becomes more peaked around the mean value as the network sizeN increases.
This increase in concentration around the mean suggests that the fairly complex dynamics does not imply
a more unpredictable behavior of macroscopic intensive quantities, at least in the limit of large N (not
shown).

In fact, whereas to predict a given solution's detailed evolution in time for a given set T of random
delays seems to be quite hard, one can use the \two-handed clock" approach, as in Section 3.5, to obtain the
expected behavior of various average quantities. For simplicity, we limit the analysis to the case in which the
duration � c of the initial damage exceeds the length� � (T ) of the smallest nearest-neighbor propagation
path, where � � (T ) is usually equal to � min . In this case, we do not expect to encounter short-periodic
asymptotic solutions with all the �rms being simultaneously down in the �rst part of the period.

Since the network is a braid chain and the production of a given �rm, apart from the initially damaged
one, is impaired for the �rst time as soon as one of thek stocks that it needs is unavailable, the hare
argument can still be used for obtaining a close upper bond onthe average signal velocityv. Hence we
argue that, in the limit 1 � � max � n � N , and at large t, the signal that propagates across the chain
with the average velocity v is still well approximated by Eq. (18), i.e. v . v� = k � (� max � 1).

The main di�erence with respect to the previous asynchronousfree model is that here, because of the
external-rescue inputs, only a fractions of the �rms between the origin and the minute-hand position is
impaired on average, during a time step of length� min . Since the delays are independently and identically
distributed along the whole chain, at large enough times this fraction s is constant, and the damage spreads
linearly with time, up to the point of invading the whole netw ork, according to:

h� (t)i '
�

sNvt . sNv � t = sN [k � (� max � 1)]t; for 1 � t. hT �
0 (T )i ;

sN; for t � h T �
0 (T )i ;

(27)

with

hT �
0 (T )i '

N
v

&
N
v� =

N
k � (� max � 1)

: (28)

The average density of fully active �rms, h� (t; T )i = 1 � h � (t; T )i =N is thus decreasing again linearly, and
the negative slope is approximated by� v� , up to the time hT0(T )i at which it reaches the nearly constant
asymptotic value h� 1 (T )i ' 1 � s.

Hence, the e�ective transient hT0(T )i refers to the dynamics of h� (t; T )i ; in fact, it is the time at
which the minute-hand reaches the origin again, after a whole tour: it is therefore of the same order as
the time that the density takes to reach the asymptotic zero value in the asynchronous free model. It is
clearly important to distinguish between the transient T$ (T ), de�ned as the time elapsed before periodicity
settles in | which increases on average exponentially with network size N | and the de�nitely shorter
e�ective transient time hT0(T )i . The latter can be more generally de�ned as the time at which macroscopic
observables approach nearly constant values.

We present in [Fig. 11] a single-sample density,� (t; T ), as a function of time | and, as usual, after an
initial perturbation of node 1 of duration � c = � min | for a large network size N = 10 000 and in/out-degree
k = 20. In agreement with the picture emerging from the previous discussion, we �nd small 
uctuations
around a linear decay, followed by small 
uctuations around the asymptotic value, � 1 (T ) ' 0:15. The
latter is reached in a time T �

0 (T ) ' 650 (in � min units), which compares favorably with the estimate of the
average e�ective transient, hT0(T )i . 900� min that one gets from Eq. (28).

The numerical results are for a single, typical set of delaysT . For large enoughN -values, we �nd that
the 
uctuations of � (t; T ) around the average valueh� (t; T )i are usually very small, i.e. � (t; T ) ' h � (t; T )i :
in fact, they are usually of the same order of magnitude as the
uctuations of the single-sample density
� (t; T ) around the constant asymptotic value displayed in the present plot. This �nding is in agreement
with the behavior of P(� 1 (T )) shown in [Fig. 10b] and it can generally be expected for a macroscopic
intensive quantity, such as the density. We checked in particular that both the e�ective transient T �

0 (T )
and the asymptotic average value of the density,� 1 (T ) ' 1 � s, are usually almost indistinguishable for
di�erent choices of the randomly selected set of delaysT .
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Fig. 11. Evolution of the density � (t; T ) of fully active �rms as a function of time for a typical set of delays T , in the
asynchronous forced model on a braid chain, after an initial perturbation of node 1 of duration � c = � min = 1 day. The
network size is N = 10 000 and the in/out-degree is k = 20. We study delays � ij = � (i ) that depend only on the customers;
delays � ij = � (j ) that depend only on the suppliers; and delays � ij = � (ij ) that depend on both of them. See text for details.

Besides considering delaysf � ij g that depend upon both the customer i and the supplier j (red curve
in the �gure), we present in [Fig. 11] also numerical resultson the single-sample density� (t; T ) for models
whose delays depend only upon the customers,� ij = � (i ) (green curve), or only upon the suppliers,
� ij = � (j ) (blue curve). In the latter two cases, the e�ective transient times T �

0 (T ) are roughly equal, and
de�nitely longer than in the �rst case. The faster decay in th e latter case (red curve) can be explained by
noticing that | as in the asynchronous free model studied in Section 3.5 | when � ij depends upon both
its indices, there are more concurrent propagation paths ofdi�erent durations in the system, hence the
average signal propagation velocity is higher.

The constant asymptotic mean value of the density,� 1 (T ) ' 1� s, is de�nitely larger when the delays
depend only upon the customers (green curve), whereas it is almost the same for the other two cases (blue
and red curves). In fact, when� ij = � (i ), Eq. (13) becomes:

x i (t) = x i [t � � (i )] _

8
<

:

kY

j =1

x i � j [t � � (i )]

9
=

;
: (29)

Hence, there is a de�nitely smaller number of delay combinations T that can result in a�ecting the pro-
duction of a given �rm, i.e. the average fraction s of simultaneously impaired �rms | within the region
reached by the spreading of the initial perturbation | is sma ller. In fact, Eq. (29) implies that, after the
transient T �

0 (T ), when averaging the dynamics over a large enough time interval, each �rm is impaired
roughly for one half of the time; equivalently, for large N � k, there is, on average, one half of the �rms
that are impaired at each time step, i.e. s ' 0:5. This is in perfect agreement with the result on the
asymptotic value of the density, � 1 (T ) ' 0:5, that one �nds in [Fig. 11] for � ij = � (i ) (green curve).

To summarize, the external rescue inputs in the forced modelon a braid chain do prevent economic
collapse,i.e. one �nds a nonzero fraction of fully active �rms in the large- time limit. This fraction can be
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as large as one half of the total number of �rms, whereas the collapse of the production chain is total in
the absence of such external inputs, cf. [Fig. 6].

4. Directed random graphs (DRGs)

4.1. Network topology

The study of BDEs for the relatively simple topology of braid chains | with their geometric periodicity and
strong connectivity | held considerable interest for two re asons: (i) it allowed us to compare numerical
results with analytical considerations; and (ii) it provid ed a �rst glimpse at the substantial di�erences
between free and forced models, on the one hand, and between synchronous and asynchronous forcing, on
the other.

We now shift our attention to the more realistic topology of DRGs. Here the elements of the connectivity
matrix A are given by Eq. (1) and we start by a quick review of the well known features of such a random
structure [Karp, 1990;  Luczac & Seierstad, 2009].

P. Erd}os and A. R�enyi initiated the study of random graphs a bout 50 years ago [Erd}os & R�enyi,
1959, 1960, 1961]; such graphs have been extensively studied more recently, along with a number of related
models [Bollob�as, 1998; Watts, 1999; Albert & Barab�asi, 2002; Newman, 2003]. One gets an undirected
Erd}os-R�enyi random graph G(N; p) by taking the edges that connect each possible pair (i; j ) of the N
nodes to be independently and identically distributed with probability p. In our notation, the matrix A is
symmetric, since the eventA ij = 1 implies the event A j i = 1, and vice-versa.

The total number of pairs of nodes isN (N � 1)=2, and each edge contributes to the degree of the 2
nodes that are its endpoints; the average connectivityz is given, therefore, byz = hki = ( N � 1)p ' Np.
The probability distribution of the degree k is, in fact, binomial:

P(k) =
�

N � 1
k

�
pk (1 � p)N � 1� k '

zk

k!
e� z; (30)

and it converges to a Poisson distribution with meanz = hki in the limit of large N and small p.
One de�nes a connected componentSc of the graph as an ensemble of nodes such that, from each node

i 2 Sc, there exists at least one pathCij | across nodes f h1; h2; : : : ; hl g belonging to the sameSc | that
reaches each other possible nodej in that Sc:

8(i; j ) 2 Sc ) 9 C ij : A ih 1 Ah1h2 � ::: � Ah l j 6= 0 h1; h2; : : : ; hl 2 Sc: (31)

The average sizeSc of a connected componentSc can, therefore, be evaluated by starting from a randomly
chosen node, and computing the number of its �rst neighborsz1, of its second neighborsz2, and so on. For
the simple case of a Poisson distribution, one has:

z1 =
1X

k=0

k
zk

k!
e� z = z ;

z2 =
1X

k=0

k(k � 1)
zk

k!
e� z = z2 ;

zl =
z2

z1
zl � 1 =

�
z2

z1

� l � 1

z1 = zl ; (32)

hence one obtains:

Sc =
1X

l=0

zl =
1

1 � z
for z < 1: (33)

In the N ! 1 limit, one thus �nds that hSci diverges asz ! zc = 1. Above this critical value zc = 1,
a giant connected componentSgc appears, andSgc contains a �nite fraction 0 < s gc � 1 of the nodes,
Sgc = sgcN , as usually observed in real networks. This \phase transition" was already enphasized in the
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pioneering papers of Erd}os and R�enyi [Erd}os & R�enyi, 1959, 1960, 1961], and was subsequently studied in
great detail from both the mathematical [Bollob�as, 1998] and the physical point of view [Albert & Barab�asi,
2002].

When z exceeds 1,sgc tends rapidly towards 1. Let us call r the fraction of nodes that do not belong
to the giant connected componentSgc, r = 1 � sgc. The value of r is obtained by observing that such nodes
have successive neighbors not belonging to this giant component. Based on the Poisson process equations,
we get

r =
1X

l=0

[zr ]l

l !
e� z = ez(r � 1) : (34)

This result can also be derived in the probabilistic framework of generating functions [Newman et al.,
2001], a framework that is well suited for applications to more general distributions P(k) of the degreek,
as well as to DRGs, and is presented in Appendix C.

In fact, the DRG D(N; p) that we are considering is a simple generalization of the Erd}os-R�enyi model,
except that we have to distinguish between the numberkin of in-links and the number kin of out-links.
Still, each directed link is chosen independently with the same probability p among theN (N � 1) possible
ones. Hence the average in/out-degreez = hki = hkin i = hkout i is again given by hki = ( N � 1)p ' Np,
and P(kin ) = P(kout ) are still described by Eq. (30). Notice that | if we were to tr ansform a DRG into
an undirected graph, by interpreting each link as an edge | we would get a random graph with average
degree equal to twice the average in/out-degree of the DRG westarted with.

Fig. 12. Typical realizations (a) of a random (undirected) g raph G(N; p), and (b) of a directed random graph (DRG) D (N; p).
The two graphs have the same small network size ofN = 12 nodes, and the samep ' 1=N and hki ' 1 value for both. The
number of the edges in the random graph is one half the number of the directed links in the DRG.

We illustrate in [Fig. 12] the di�erences between a typical undirected random graph G(N; p) in the
left panel and a DRG D(N; p) in the right panel. Both graphs have the same numberN = 12 of nodes,
and the same valuesp ' 1=N and hki ' 1. It is clear from this �gure how di�erent the random topology
is from that of the brain chain. In the latter, and for the same in/out-degree value k = 1, one would �nd
a single connected component of sizeN (see again [Fig. 1]). Instead, in [Fig. 12] here | and looking for
simplicity at the left panel | we observe two isolated nodes, three connected components of size 2, and
one connected component of size 4.

It is likewise clear from the �gure that, in the directed case [Barbosaet al., 2003; Newmanet al., 2001;
Dorogovtsev et al., 2001; Broderet al., 2000], the existence of a path that connectsi to j does not usually
imply the existence of a path connectingj to i . For each given node, one can hence de�ne:

� the out-component, which is the set of all nodes that can be reached from it;
� the in-component, which is the set of all nodes from which it can be reached;
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� the strongly connected component, which is the set of all thenodes that can be reached from itand from
which it can be reached,i.e. the intersection of the in-component and the out-component; and, �nally,

� the weakly connected component, which is the set of all the nodes that can be reached from itor from
which it can be reached,i.e. this component is the union of the in-component and the out-component.

The weakly connected component also corresponds to the connected component of the graph obtained by
disregarding the directionality.

Fig. 13. A sketch of the bow-tie structure characteristic of a DRG's topology [Dorogovtsev et al., 2001]: the two bows
correspond to the giant components I n S sc and O n Ssc, respectively, whereas the tie represents the giant strongly connected
component Ssc = I \ O . Here we consider the most general case, in whichW = I [ O [ � , where � contains in particular
the paths linking the two bows without passing across the tie Ssc, as observed in some real networks such as the web [Broder
et al., 2000].

The analogue of the phase transition in the previously discused case of an undirected random graph
may be characterized in a DRG by the formation of a giant in-component I , containing I = sIN nodes; of a
giant out-component O, containing O = sON nodes; of a giant strongly connected componentSsc = I \O ,
containing Ssc = sscN nodes; and of a giant weakly connected componentW, containing W = swN nodes.
In fact, one usually expects to observe two di�erent transitions, i.e. two di�erent abrupt changes in the
properties of the system in the large-N limit: (i) at the lower average in/out-degree zw

c , which corresponds
to the critical average degree in the undirected graph, at which the giant weakly connected component
W appears; and (ii) at the higher average in/out-degreezd

c , at which the e�ective transition in the DRG
occurs, namely at which the two giant componentsI and O appear simultaneously.

For z � zd
c , the resulting bow-tie structure is sketched in [Fig. 13] and has been observed in many

di�erent real networks [Broder et al., 2000; Ding et al., 2009]. Notice that the appearance of the giant
in-component I corresponds to the divergence of the number of nodes that canbe reached from a given
one, while that of the out-component O corresponds to the divergence of the number of nodes from which
a given one can be reached;i.e., a node is in the giant in-component if its out-component diverges, and
vice-versa.

Moreover, above the transition, it may be necessary to introduce one more giant component in order
to fully characterize the topology, since it is possible to have (I [ O ) � W , while W r (I [ O ) 6= ? . The
latter is, in particular, the case when there are directed paths between I and O that do not pass across
Ssc. Such a set� = W r (I [ O ) 6= ? has been found in the structure of the web [Broderet al., 2000] |
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which can be seen as a DRG characterized by a power-law distribution in/out-degree | and is shown in
[Fig. 13].

The generating-function formalism for DRGs [Newmanet al., 2001; Dorogovtsevet al., 2001] turns out
to be particularly simple when the in/out-degree distribut ion factorizes,Pk in ;kout = Pk in Pkout , since the in-
and out-components are independent in the large-N limit, so that one simply has ssc = sIsO. For the case
of P(kin ) = P(kout ), with the Poisson distribution P(k) given by Eq. (30), the transition does still occur
at the critical average in/out-degree zd

c = hki c = 1, and the giant in- and out-components have the same
size:

sI = sO = 1 � r; (35)

where r is once more given by the solution of Eq. (34). Thusssc = (1 � r )2, whereas the fraction of nodes
in I n S sc, and equivalently in O n Ssc, equals r (1 � r ): the three regions in the bow tie have roughly the
same size in the thermodynamic limit. This result has likewise been observed in real networks [Broder
et al., 2000], for r ' 1=2, and hencez ' log 4. Moreover, one simply haszw

c = zd
c =2: when r is a solution

of Eq. (34) one hasr (2z) = r 2, and it follows that, for z > z d
c , sw = 1 � r 2 = sI + sO � ssc, which con�rms

that here W = I [ O and � � ? .
An important implication from this analysis for the present damage-propagation study is that nodes

lying outside the giant connected componentW are \screened," i.e. protected from any perturbation
starting inside the giant component.

Another key property of the topology of Erd}os-R�enyi rando m graphs is that their structure is tree-like
for p-values that are not too large. This property holds rigorously for the �nite-size connected components,
both below and above the critical point, since it can be shownthat the probability of closed loops occurring
approaches zero in the limit N ! 1 ; it is at least locally valid within the giant connected components,
where their occurrence can be neglected in a �rst approximation.

Fig. 14. The local tree-like structure characteristic of Er d}os-R�enyi random graphs: damage spreading (a) on an undir ected
random graph G(N; p), with hki = 3; and (b) on a DRG D (N; p), with the same mean degreehkout i = hkin i = 3.

We compare in [Fig. 14] these locally tree-like structures for a undirected random graph and a DRG
with the same z = 3 value: notice that, in the �rst case, one has z2 = z2 from Eq. (32), while in the second
case, one gets the same kind of result, withz2 = hkin ihkout i = z2. In other words, in DRGs, the probability
P(f i ! j g ^ f j ! ig) to have both the link i ! j and the link j ! i present equals roughlyp2, and it
is therefore negligible whenp � 1, which is the case of typical interest here for largeN . In undirected
random graphs, though, one has | in order to make a meaningful computation | to also consider the
edges that emerge from a given node, apart from the one along which the signal arrived.

As we shall see below, this di�erence is evident in the resultsfor damage spreading over just a short
time in BDE models on random graphs. These numerical resultscan be predicted quite accurately on the
basis of the local tree-like topology. Moreover, when considering asynchronous updating due to randomly
selected delays, two paths with the same space length still have, in general, unequal time lengths; but
the locally tree-like topology implies that the number of distinct concurrent paths that connect two given
nodes does not increase as fast with the average in/out-degreehkin i = hkout i as in the deterministic braid
chains of Section 3.



May 13, 2011 15:57 BC_MG_SH_GW-BDE_Econ-IJBC_v


26

4.2. Synchronous free model

We start again with the simplest case, the one of the free models | de�ned by Eq. (3), with all the delays
equal to the same time unit � 0 = 1 day, on the DRG D(N; p) | and we study as usual the consequences
of a natural disaster impairing the activity of a single �rm f or a duration � c. For simplicity, we limit the
analysis to the case� c = � 0.

For a DRG, the possibility exists of a link being selected with probability p = 0, i.e. of such a link
being absent altogether from the geometric con�guration 
 o f the network. While the random selection
still occurs only when setting up the BDE, it now involves not just the set of delays T but also 
. For
the sake of concision, we introduce the notation 
� = (
 ; T ) to refer to the random set-up involving both
network geometry and BDE delays.

In the presence of randomness in the network selection, the BDE system (2) can no longer be reduced,
as in Section 3.1, and one has in principle to solve a set ofN equations in N variables; this set of BDEs
can be rewritten in the form:

x i (t) =
Y

j 2I (i )

x j (t � � 0) i = 1 ; :::; N: (36)

The Boolean product here runs over all the indicesj labeling the �rms that are suppliers of i . We denote
this set of nodes byI (i ) = f j : A ij 6= 0g; the in-degreeI (i ) of node i is the total number of its suppliers
i.e. I (i ) = kin (i ). Analogously, the out-component O(i ) = f j : A j i 6= 0g of node i corresponds to the �rms
that are its customers; their total number is kout (i ).

It is clear from Eq. (36) that the properties of this DRG model strongly depend upon the probability
distributions of the in- and out-degree. We assumekin (i ) and kout (i ) to be independent and given by
Eq. (30), with mean values that satisfy hkin (i )i = hkout (i )i = ( N � 1)p = z. Hence, for increasingz values,
the statistical properties of the solutions will re
ect the appearance of giant connected components in the
model's graph. In particular, one expects to �nd fundamentally di�erent kinds of solutions for an average
in/out-degree that is lower or higher than the critical valu e zd

c = hki c = 1.
The damage spreading in this simple free model can, in fact, be understood with the same argument

used for evaluating the average size of the connected components in the graph: at t = 1, the signal
propagates from nodei , occupied by the initially damaged �rm, to its closest neighbors, whose average
number is z1 = z; at t = 2, it reaches its next-closest neighbors, whose average number is z2 = z2, and so
on. From Eq. (32) it follows that, at time t, the damage did reach on averagezt nodes; hence:

[DRG] h� (t; 
) i ' zt ; for t � logN= logz: (37)

This implies that the average number of impaired �rms increases with time only if z = hki > hki c = 1, i.e.
only if the graph is above its transition point.

This argument does make use of the DRG's local tree-like structure, since we are implicitly assuming
that the probability of two nodes reached at a given time stepbeing themselves connected by a di�erent
path, i.e. the probability of closed loops, can be neglected. In fact, the argument breaks down roughly at
the time when the signal has propagated to the whole connected component to which the initial node i
belongs. At that time and later, one can �nd two distinct situ ations:

� Either i lies in a connected component containing a small number of nodes, and thusSc = 0(1). One then
expects that there are no loops, and hence the system can completely recover from the initial damage, i.e.
h� 1 (
) i = 1: a randomly chosen initial node i does belong, in the large-N ! 1 limit, to a connected
component with a �nite number of nodes, almost surely for subcritical degree z = hki < 1 and with
probability r for supercritical degreez = hki > 1.

� The graph is above the critical point, hki > 1, and i belongs to a giant connected component. Because of
the presence of closed loops, a �nite fraction of the �rms will be impaired in the asymptotic solution, and
the production network will never recover completely from the initial damage.

Such results can be explained by noticing that, in our DRG model, there are �rms that have no
customers in the network. For these �rms that lie at an end of the production chain, being unable to
produce does not have any consequences on the rest of the chain but only on household well-being. Since



May 13, 2011 15:57 BC_MG_SH_GW-BDE_Econ-IJBC_v


27

z = hki measures the average number of customers in the network, in the limit of a large total number N
of �rms, one observes the previously mentioned phase transition: for hki < 1, most of the �rms are either
themselves in this \end-of-the-chain" situation, or have just a few customer �rms that are in this peculiar
situation, and so on; thus the initial damage does not usually propagate. Conversely, as soon ashki > 1 a
�nite fraction of the �rms have customers in the network, whi ch have themselves other customers and so
on.

To make this analysis more quantitative, one can say in the large-N limit that, in a free DRG above
the transition point, in order for damage to reach a �nite fra ction of the network, the initially attained
�rm has to belong to the giant in-component, i 2 I : this occurs with probability 1 � r . Moreover, in this
asymptotic limit, one expects that all the �rms in the giant o ut-component O will eventually be impaired,
which means a fractionsO = 1 � r of the entire network. Correspondingly, we �nd:

h� (t; 
) i '
�

zt for t � h T0(
) i ;
(1 � r )2N for t � h T0(
) i ; N � 1;

(38)

where the time that h� (t; 
) i takes before reaching the asymptotic constant average value is also quite
short for large N values, since it is of orderhT0(
) i � log((1 � r )N )=log z:

Interestingly, (1 � r )2 is also the fraction of nodes in the network's giant stronglyconnected component
Ssc. Nevertheless, the two quantities do have a di�erent meaning: when the initial node belongs to I ,
the total number of eventually impaired �rms is (1 � r )N = SO, which is de�nitely larger than Ssc for
small r -values. This point can be better understood by looking at the Erd}os-R�enyi undirected random
graphs having the same average degreez > 1: here, the initially damaged �rm i has to belong to the giant
connected componentSgc, and the �rms whose activity is �nally impaired are the ones i n Sgc as well; hence
we �nd again that h� (t; 
) i approaches (1� r )2N at large times, although Ssc = 1 � r .

To summarize, the average asymptotic density of fully active �rms is given, in the undirected random
graph as well as the DRG, by

h� 1 (z; 
) i = 1 � (1 � r )2 = 2r � r 2; (39)

where we recall that r is the solution of Eq. (34).
An important di�erence between the behavior of the synchronous free models on both directed and

undirected random graphs concerns the short-time dynamics: as shown in [Fig. 14], in the undirected case
the signal propagates also back to the node from which it has arrived. To correctly describe the behavior
of h� (t; 
) i , Eq. (37) should therefore be replaced by:

[URG] h� (t; 
) i =
[t=2]X

l=0

zt � 2l for t � logN= log z; (40)

where [y] denotes, as usual, the integer part ofy, i.e., the largest integer smaller thany.
Numerical results on the average total number of impaired �rmsh� (t; 
) i in the synchronous free model

on random graphs are presented in [Fig. 15]. In [Fig 15a], we compare the short-time behavior ofh� (t; 
) i
between the DRG and an undirected random graph with the same average degreez = hki = 1 :5. In this
case, the transient that precedes the attainment of the asymptotically constant value is relatively long, and
the di�erence is appreciable between the DRG case | describedby Eq. (37), with h� (t; 
) i ' zt | and
the undirected one, where the numerical results are in better agreement with h� (t; 
) i ' zt + zt � 2, which
is an approximation of the sum on the right-hand side of Eq. (40). Notice, moreover, that the asymptotic
values in both of the cases are nearly equal, as expected.

In [Fig. 15b], we plot the same quantity | computed for DRGs wi th di�erent values of z = hki > 1
| and compare the numerically obtained curves with the expec ted short-time behavior given by zt . It
is clear from this �gure that the asymptotic total number of i mpaired �rms is an increasing function of
the average in/out-degree. Moreover, already forz as small asz = 5, this number practically coincides
with the system sizeN , thus implying that the damage spreads in just a few steps to all the �rms, since
hT0(
) i ' logN= logz.

Our results on the average asymptotic densityh� 1 (z; 
) i , as a function of the average in/out-degree
z = hki , are presented in [Fig. 16]: they turn out to be in very good agreement with the expected curve,
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Fig. 15. Short-time behavior of the average total number of i mpaired �rms h� (t ; 
) i for synchronous free BDE models on
random graphs, with a large number of nodes N � 1; the results are averaged over at leastN s = 200 di�erent con�gurations

 of the links. (a) Comparison of h� (t ; 
) i , between the DRG D (N; p), with average in/out-degree z = hki = 1 :5, and the
undirected Erd}os-R�enyi random graph G(N; p), with the same hki value; here N = 5 000. (b) Comparison between the
behavior of h� (t ; 
) i in the DRG D (N; p), for di�erent values of z = hki above the transition point zc = 1; here N = 10 000.
The numerical results are also compared with the corresponding expected behavior, given by Eq. (37) for DRGs, and by an
approximation of Eq. (40) for undirected random graphs, res pectively. See text for details.

cf. Eq.(39), obtained by evaluating numerically the solution r of Eq. (34). The numerical results in the
�gure are for DRGs, but we checked that in undirected graphs with the same average degree one gets
de�nitely comparable results (not shown). This agreement also implies that for the number of nodes used
here,N = 10 000, the corrections to the behavior ofh� 1 (z; 
) i in the limit N ! 1 are already negligible.

Fig. 16. Average asymptotic density h� 1 (z; 
) i for synchronous free BDE models on DRGs with large network size, N =
10000; the results are averaged over at leastN s = 200 di�erent con�gurations 
 of the links. The asymptotic a verage density
is plotted as a function of the average in/out-degree z = hki , and it is compared with the expected behavior, given by Eq. ( 39).

To conclude this section, we note that the study of these simple synchronous free models on random
structures | which are more complex than those in Section 3 | m ight prove useful also for a better
understanding of the topology of the networks themselves. The size of their connected components, in
particular, is di�cult to compute analytically in the case o f realistic directed networks, in which the
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probability distributions of the in- and out-degree do not factorize [Newman, 2007]. A �rst step in this
direction would be to consider directed \small-world" networks [Watts, 1999]; such networks interpolate,
in some sense, between the topology of a braid chain and that of an Erd}os-R�eny random graph.

4.3. Asynchronous free model

We now turn to the study of the free model on a DRG with random delays that are uniformly distributed
in the interval [ � min ; � max ]. The model is described by a set of BDEs analogous to Eq. (36):

x i (t) =
Y

j 2I (i )

x j (t � � ij ); i = 1 ; :::; N; (41)

where T = f � ij g is a set of quenched random variables, independently and uniformly distributed in the
interval [ � min ; � max ]. The time is in units of � min = 1 day, and we take as usual� max = 10 days, limiting
moreover the analysis to the case in which the duration of theinitial perturbation is � c = � min .

We start by noting that, in the �rst time step, the signal prop agates on average toz=�max other �rms.
In the next time steps, one still expects | for networks above the transition point zd

c = hki c = 1 | to
observe an exponential spreading of the damage. Since the network topology is locally tree-like, the signal
propagates, as in the previous subsection, independently along each given branch of the tree, and on to
further and smaller branches. Since the propagation paths of di�erent time lengths are not concurrent, the
random delays are likely to show up �rst of all in a global rescaling of the time by a factor 1=�av , where
� av = h� ij i .

The average total number of impaired �rms h� (t; 
 � )i is thus given by

h� (t; 
 � )i =
z

� max
zt=� av

e� for t � logN= log ze� ; (42)

note that now both the geometry 
 and the set of delays T are randomly selected, so we refer henceforth to
the generalized con�guration 
 � = (
 ; T ). The e�ective average in/out-degree which appears in Eq. (42)
has to approachz when z ! 1+ ; henceze� � z�

e� = z: To see this, note that Eq. (42) has to reduce to
the synchronous case when all the delays equal� 0 = 1, whereas the presence of longer delays cannot but
increaseze� .

In fact, since the signal from a given node propagates to its customers up to the time t + � max , one �nds
an e�ective increase of the average in/out-degree, which canbe easily bounded from above, as follows:

ze� � z+
e� = z

1X

l=0

�
z

� max

� l

=
z

1 � z=�max
: (43)

Summarizing, for short times and for z > 1, we get:

f � (t; z) � f (t; z�
e� ) � h � (t; 
 � )i � f (t; z+

e� ) � f + (t; z); (44)

where

f (t; ze� ) =
z

� max
zt=� av

e� : (45)

The numerical results on h� (t; 
 � )i | obtained for several supercritical values z > 1 of the average
in/out-degree | are compared in [Fig. 17] with the expected u pper and lower boundsf � (z; t) and f + (z; t)
on the short-time behavior, given by Eqs. (44) and (45). The computed curves always lie betweenf � (t; z)
and f + (t; z), within a wide time window; they approach f � (t; z) for z ! 1+ , and f + (t; z) for large z � 1;
in fact, the numerical results at short times nearly coincide with f + (t; z) already for z as small asz = 3.

In the large-time limit, since there are loops in the giant strongly connected componentSgc, one expects
that the damage will spread to the whole giant out-componentO, with the same probability 1 � r as in the
synchronous model with equal delays. We veri�ed numerically that one still observes, for largeN values, an
asymptotic average density of fully active �rms h� 1 (
 � )i = 2 r � r 2, in agreement with Eq. (39). Moreover,
for N -values that are not too small, one usually gets the same asymptotic density � 1 (
) for a given network
con�guration 
, whether the delays are all equal or are randomly chosen,i.e. both in the synchronous and
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Fig. 17. The average total number of impaired �rms, h� (t; 
 � )i , as a function of time, in the free BDE model on a DRG,
for di�erent mean-degree values z = hki ; the network size is N = 10 000. The results are averaged over at least N s = 200
di�erent con�gurations of the links 
 and of the random delay s T , and 
 � = (
 ; T ). The numerical results for each z-value
are compared with the expected short-time lower and upper bounds, f � (t ; z) = f (t ; z�

e� ) and f + (t ; z) = f (t ; z+
e� ), respectively,

where f is given by Eq. (45). See text for details.

Fig. 18. The density of fully active �rms � (t; 
 � ) as a function of time, for the free model on a DRG with three di stinct,
supercritical average connectivities, z = 2 :0; 1:75 and 1:5 > 1. Here we consider a single typical con�guration 
 of the lin ks,
and compare the results for delays taken all equal to � 0 = 1 day with those for a single typical con�guration T of randomly
selected delays, chosen to be uniformly distributed between � min = 1 day and � max = 10 days. Note that the densities approach
exactly the same asymptotic value in both cases, and for all four z-values considered.

in the asynchronous model. This can be qualitatively understood because, if the initially impaired �rm is
in a connected component in which there are no loops, the economy can recover completely in both cases,
whereas if it is in the giant in-component then the damage spreads to the whole out-component of the
network.

Nevertheless, the asymptotic solutions for the free BDE systems on the same DRG con�guration 
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Fig. 19. The density of fully active �rms � (t ; 
 � ) as a function of time, in a given DRG con�guration 
 with z = hki = 0 :525
and N = 100. We compare results for synchronous updating, with all delays equal to � 0 = 1 day (lower, blue curve), to the ones
for a single typical con�guration of random delays T , uniformly distributed between � min = 1 day and � max = 10 day (upper,
red curve). Notice that the transient is much longer for the a synchronous updating, but the asymptotic solutions displa y the
same behavior of the density, which is periodic with a mean value de�nitely smaller than one, although the network is quit e
subcritical, with z < hki c = 1 : See text for details.

do not need to coincide in the synchronous and asynchronous case. This e�ect occurs for relatively small
N , near or below the critical point, z = hki . 1, since it is related to the presence of loops in connected
components that contain a large enough fraction of the nodes, but are not the giant ones.

While a detailed analysis of the �nite-N behavior of free BDE models on DRGs is beyond the scope of
the present paper, we show in [Fig. 19] and in [Figs. 20a{i] examples of time-variable asymptotic behavior,
for DRG con�gurations 
 with N = 100 and with z = 0 :525, i.e. well below the critical point. We note
that the observed behavior may also depend upon the positioni � of the �rm that is initially damaged,
which is taken here to bei � = 1 in all the computations. Nevertheless, our results are qualitatively the
same for other choice ofi � (not shown).

We note �rst that, when the economy does recover completely,then it does so in the asynchronous as
well as in the synchronous model; it is only when there is no complete recovery that one observes di�erences
between the two. We compare in [Fig. 19] the numerical results on the density � (t; 
 � ) of fully active �rms
for the synchronous-updating case of all delays equal to� 0 = 1 day with those for a typical con�guration
of randomly selected delays, uniformly distributed between � min = 1 day and � max = 10 days; the duration
of the initial damage is � c = 1 day in both these cases.

The transient for the asynchronous updating (red curve) is much longer than for the synchronous
one (blue curve), but the asymptotic solutions display the same type of behavior, with small-amplitude,
distinctly periodic oscillations around a mean value of� $

1 ' 0:67 < 1, although the network lies well below
the critical point hki c = 1 :

The results in the nine panels of [Fig. 20] con�rm that the di�e rences between asynchronous and
synchronous updating, for the same randomly selected network con�guaration 
, can be quite substantial:

� The transients are never shorter, and typically quite a bit longer, for asynchronous updating, cf. panels (c)
and (g) here, as well as [Fig. 18] and [Fig. 19]; often, though, they can be of a length that is comparable
to the case of synchronous updating.

� The asymptotic mean density is always higher for asynchronous updating, and sometimes the di�erence is
appreciable; see again panels (c) and (g).

� The asymptotic behavior for the synchronous-updating caseinvolves not only constant and periodic den-
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Fig. 20. The density of fully active �rms � (t ; 
 � ) as a function of time, for nine random network con�guration s 
 � , all with
z = 0 :525 < 1. In all nine cases, we compare results for synchronous (blue curves) with those for asynchronous updating
(red curves) on the same network geometry 
; the latter resul ts are for single, typical con�gurations T of randomly selected
unequal delays. Notice that here the densities approach de�nitely distinct types of asymptotic behavior in the two case s. See
text for details.

sities, but also doubly-periodic solutions, as in panel (e).
� The asymptotic behavior for the asynchronous-updating case appears to be always more complex than in

the synchronous case | doubly periodic vs. constant, as in panel (f), or aperiodic vs. constant or purely
periodic, as in panels (g) and (i).

� The amplitude of the oscillations when the updating is asynchronous is typically larger than when it is
synchronous, cf. panels (a, c, f, g, i), but it can also be comparable, cf. panels (d, h) or even substantially
smaller, cf. panels (b, e).

The probability of such complex behavior is not negligible,since we have observed the same kind of
results in roughly (1=10)th of the con�gurations 
 � = (
 ; T ) we studied.

4.4. Forced DRG models

We conclude this work by presenting some preliminary results on synchronous and asynchronous updating
for forced models | as de�ned by Eqs. (1), (2) and (4) | on a DRG.

The equation for eachx i of system (2) can be written as:

x i (t) = x i (t � � 0) _

2

4
Y

j 2I (i )

x j (t � � 0)

3

5 (46)
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for synchronous updating, with all delays equal to� 0 = 1 day, and:

x i (t) =
Y

j 2I (i )

[x i (t � � ij ) _ x j (t � � ij )] (47)

for asynchronous updating, with randomly selected delaysT = f � ij g. We study, as usual, the propagation
of the perturbation after initial damage to a single �rm, whi ch we take for simplicity of duration � c = 1
day.

We start by noting that, when the economy recovers completely in the free models considered in
Sections 4.2 and 4.3, it recovers completely also in the present forced models; hence the asymptotic solution
is x i � 1. This happens when the initially damaged �rm belongs to a component that contains no loops.
For large N , this is the case almost surely below the DRG's critical point, hki c = 1, and with probability
r for z = hki > 1, wherer is the fraction of nodes disconnected from the giant connected componentSgc
and is given by the solution of Eq. (34).

Fig. 21. The density of fully active �rms � (t ; 
 � ) as a function of time, in the forced model on a DRG with a large network
size N = 10 000 and average input/output degree z = 7 � h ki c. Here we compare the results for synchronous (blue curve) vs.
asynchronous updating (red curve), as in [Fig. 19].

When there are no loops, the locally tree-like argument provides a fully adequate explanation of the
dynamics in the free models, but the production does recovercompletely at the end; likewise, at least partial
recovery occurs when there are only a few loops present in thenetwork. The fact that the asymptotic density
is usually zero for z large enough in the free models is due to the presence of a large number of loops.
Nevertheless, because of the external rescue inputs that weconsider in the present subsection, one expects
that, even for high supercriticality z � 1, though the damage spreads almost surely (r � 1) to the whole
giant connected out-component,O | whose size is approximately N in this limit | the average fraction of
healthy �rms in the asymptotic solution is larger then zero, i.e. the economy can recover, at least partially.

In fact, for synchronous updating, since each �rm recovers either if all of its suppliers did recover or if
its activity has been already impaired for a duration � 0, one expects that the average �rm is fully active
one half of the time. More precisely,h� 1 (z; 
 � )i = 1 � (1 � r )2=2 ' 1=2, for z � 1. In the presence of
randomly selected delays | since there is a larger number of concurrent paths of di�erent lengths, and the
activity of a given �rm can be impaired for a duration that dep ends upon the good which is lacking | the
asymptotic average density is expected to be smaller.

Our numerical results on the evolution of of � (t; 
 � ) | for a single, typical DRG con�guration, with
N = 10 000, and average in/out-degreez = 7 � h ki c = 1 | are given in [Fig. 21]. For synchronous
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updating (blue curve), the asymptotic density is periodic with mean value � 1 ' 0:5 and a peak-to-peak
amplitude of 0:2, whereas for asynchronous updating (red curve), it 
uctuates slightly around the lower
value � 1 (
 � ) ' 0:3. Notice that in the free models on the DRG one has, cf. [Fig. 16] in Section 4.2,
h� 1 (
 � )i ' 0 for z = hki & 5; hence the external rescue inputs do allow a partial recovery of the activity,
as expected. Moreover, in the asynchronous-updating case,the amplitude of the 
uctuations is much smaller
(by a factor of 10 or more) than in the synchronous case, whereabout 0:2N ' 2000 �rms are involved in
this oscillating behavior between being fully active and impaired.

A qualitative explanation of the results in [Fig. 21] starts by arguing that the damage is initiated on
the periphery of the DRG's connected component and spreads rapidly towards the center. Then, because
of the external inputs, most of the economic network recovers, apart from a few �rms that are once again
on the periphery, and have been reached later by the wave of damage: these �rms will be responsible for
the next negative impulse. Roughly speaking, the nodes withlarger in/out-degree are the ones that occupy
the most central positions in the DRG, whereas having a smallin-degree means that a node is less likely to
be reached by the damage propagation, and a small out-degreemeans that it is less likely to transmit the
damage; whether it is their in- or the out-degree that is small, these nodes lie on the network's periphery.

P
(x

=
0)

distance from center0
Fig. 22. A qualitative sketch of the expected fraction of imp aired �rms as a function of the distance of their position fro m
the center of the connected component of the graph. See text for details.

The picture resulting from these considerations is sketched in [Fig. 22]; it implies that the degree of
connectedness of a �rm does have important implications forits staying free of damage. The results in
[Fig. 21], in turn, speak to the important role of waiting tim es in a production chain for the up- and
down-time of �rms: the fact that these times are not all equal can actually smooth out 
uctuations in the
health of a large fraction of the �rms in such a chain.

5. Concluding remarks

5.1. Summary

We have studied the propagation through various kinds of networks of initial damage at a single node.
Our motivation was damage propagation through production networks, but the results are fairly general.
The initial damage here was assumed to a�ect a single �rm for a given time � c. Boolean delay equations
(BDEs) were used to model the dynamics on the network, and we distinguished between free models,
which represent closed, isolated networks, andforced models, in which external resources can help mend
the damage. We also considered two kinds of network topologies, namely periodic braid chains (Section 3)
and directed random graphs (DRGs; Section 4), as well as two types of distributions of delays, associated
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with synchronous and asynchronous signal propagation, respectively.
The results of the entire investigation are summarized in [Tab. 3] and we highlight the most important

ones herein. In the free models, the local-�rm dynamics is controlled by a logical AND function of the
inputs, and the damage can invade a �nite fraction of the nodes or even the whole network when the
following two conditions are ful�lled: (i) the mean input co nnectivity of the nodes is larger than unity; and
(ii) the duration � c of the initial damage is larger than or equal to the smallest propagation time between
two nodes. Such is the case for a braid-chain topology: ultimately | in the absence of external inputs |
the production of all the �rms is impaired.

Damage spreading velocity depends sensitively upon network topology: we have shown that the number
� (t) of impaired �rms increases linearly with time for the braid chain and exponentially for the DRGs. When
the network updating is asynchronous and the delaysT = f � ij g are randomly selected,� min � � ij � � max ,
we have found that the propagation velocity is dominated by the fastest segments in the braid chain,i.e.
by the shortest delay, while it is the average delay that limits propagation speed on the DRG. Moreover,
in the random networks | and in the absence of external inputs | the saturation level of the fraction
of impaired �rms depends only upon the particular network topology, through the size of the connected
component, which becomes necessarily non-empty as soon as the mean in/out-degree is larger than one.

In the forced models, external supplies do limit the damage,and periodic waves of damage move across
the braid chains with equal delays,� ij = � 0 = 1. For the DRGs with randomly selected T , the asymptotic
solutions are, of course, not exactly periodic butcyclostationary [Gardner et al., 2006], and the duration of
the transient before this behavior is reached diverges exponentially with network size N ; still, the average
density of fully active �rms approaches a nearly constant value after a de�nitely shorter e�ective transient.
This e�ective transient corresponds approximately to the duration of the �rst cycle of propagation of
the damage across the connected component of the network; the latter \�rst transit" occurs, like in the
free models, with linear or exponential speed, depending onthe topology. Finally, periodic dynamics also
prevails when the duration of the initial damage � c is smaller than the smallest propagation time � min
between two nearest-neighbor nodes.
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Table 4. Overview of the main results obtained in the present work; each box in the table indicates the results in the
model de�ned by the column with respect to the behavior of the quantity indicated in the row. As in [Tab. 2] of Sec-
tion 2, we label by Free the free models governed by Eq. (3) and by Forced the forced models obeying Eq. (4); the
synchronous case of all delays equal to� 0 is labeled Sync and the asynchronous random-delay case, is labeledAsync ;
Chain refers to the braid chain network in [Fig. 1], and DRG to the directed random graph, with the link probabil-
ity P (A ij ) given by Eq. (1). We summarize the results | depending upon t he network's (average) in/out-degree k |
with respect to the nature of the decay in time of the density � (t ) of fully active nodes, the e�ective transient time
T0, the asymptotic density � 1 , the transient time T$ for reaching periodic behavior, and the period $ of the asymp-
totic solution; r is the fraction of nodes that do not belong to the giant connec ted component Sgc. All the results in
this table refer to the case in which the duration of the initi al perturbation is equal to the shortest delay in the model.

Chain, k = 1 Free, Sync Forced, Sync Free, Async Forced, Async

� -decay const. const. const. const.
T0 0 0 0 0
� 1 1-1=N 1-1=N 1-0:182=N 1-0:182=N
T$ 0 0 0 0
$ N N N (� max + 1) =2 N (� max + 1) =2

Chain, k � 2 Free, Sync Forced, Sync Free, Async Forced, Async

� -decay linear in t linear in t linear in t linear in t
T0 (N � 1)=(k � 1) 0 . N=[k � (� max � 1)] . N=[k � (� max � 1)]
� 1 0 1 � k=N 0 0 < � 1 < 1
T$ (N � 1)=(k � 1) 0 . N=[k � (� max � 1)] � econst N

$ 0 N=k 0 � econst N

DRG, hki � 2 Free, Sync Forced, Sync Free, Async Forced, Async

� -decay exponential in t exponential in t exponential in 2t=(� max + 1) exponential in 2t=(� max + 1)
T0 � log[(1 � r )N ]= log z < log N= log z < � max log N= log z < � max log N= log z

� 1 (N � 1) 2r � r 2 � 0.5 (z � 1) 2r � r 2 0 < � 1 < 0:5 (z � 1)
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The models that we have used are highly simpli�ed with respect to real production networks, and the
behavior of �rms has been represented in a highly idealized way. Still, results from this simple analysis
suggest that:

� Even very localized damage does spread in the absence of su�cient stocks and 
exibility; as a result,
production shortages will last and can persist for times that are much longer than the duration of the
initial local damage. This result suggests that an economy can su�er from disaster consequences even after
all physical damages have been repaired.

� The presence of multiple concurrent production and tradingpaths with di�erent delivery times does not
necessarily imply a slowing down of the speed of the signal, which can propagate as fast as the shortest
path, depending on the network topology. This result suggests that it is the most vulnerable supply chains
that control the macroeconomic losses and that vulnerability analysis should focus on the identi�cation of
key weaknesses in production and trading patterns.

Finally, the very simplicity of the models studied herein | w hile limiting their direct usefulness in
concrete situations | also suggests many areas of application that di�er from our initial, production-chain
motivation. We turn now to a brief overview of some of these areas, emphasizing in particular the ones
that might be associated with climatic applications.

5.2. Applications to the geosciences

We have already mentioned in Section 1.2 some of the other areas in which the present approach to local
damage propagation across a network might be of interest. They include, in the socio-economic domain,
logistics [Bak et al., 1993], infrastructures [Haimes & Jiang, 2001], and �nance[Delli Gatti et al., 2005;
Battiston et al., 2007], while in the geosciences they include earthquake dynamics [Zaliapin et al., 2003a,b;
Ghil et al., 2008], forest �res [Spyratoset al., 2007] and river networks [Zaliapin et al., 2010], as well as
climatic variability [Tsonis & Swanson, 2008; Dongeset al., 2009]. Finally, life-science applications include
food webs [Carpenteret al., 1985] and immunology [Kaufmanet al., 1985; Neumann & Weisbuch, 1992;
Perelson & Weisbuch, 1997], among many others.

We discuss now very succintly the network modeling of climatic variability, following [Tsonis & Swan-
son, 2008; Dongeset al., 2009]. The idea that meteorological, oceanographic or coupled climatic variability
might involve \centers of action" that are widely separated in space goes back to H. H. Hildebrandsson and
L. P. Teisserenc de Bort [Hildebrandsson & Teisserenc, 1907] and to G. Walker's \teleconnections" between
them [Walker & Bliss, 1932]. The statistical and dynamical study of such teleconnections engaged many
important �gures in the history of these disciplines over the last century [Bjerknes, 1969; Hoskins & Karoly,
1981; Wallace & Gutzler, 1981]. The closest in spirit to the approach presented here might be found in [Ghil
& Mo, 1991, Fig. 14]; see [Saunders & Ghil, 2001] for a BDE treatment of the El-Ni~no/Southern-Oscillation
(ENSO) mechanism postulated by J. Bjerknes in [Bjerknes, 1969].

Many of the dynamical studies of the atmosphere's low-frequency variability that involve teleconnec-
tions have used the highly simpli�ed geometry of a so-called� -channel with periodicity in longitude and
solid walls along parallels to the north and south of the channel, away from both the North Pole and the
Equator [Ghil & Childress, 1987; Pedlosky, 1987; Chenet al., 2003]. We saw in the present paper that
signal propagation on a braid chain can be quite di�erent from that in a more random con�guration in the
plane or, possibly, on the sphere [Hoskins & Karoly, 1981]. Thus BDE models in such geometrically di�er-
ent settings might provide some guidance to network-based investigations of teleconnections and climate
variability.

E�orts are currently under way to expand further the applicat ions of the approach presented here to
the geosciences. In [Zaliapinet al., 2010], the authors introduced a dynamic-tree framework for the study of
envirodynamics on river networks, and suggested modeling the transport along real and synthetic networks
by using BDEs. The dynamic tree of a river basin does take intoaccount the di�ering 
ow times along
the edge of the conventional, static tree. Both the dynamic and the static tree can be well approximated
by self-similar Tokunaga trees (also called Tokunaga SSTs), but the two types of trees have di�erent self-
similarity parameters. BDEs can provide easy-to-explore,preliminary models of the actual 
ow of water
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through the edges, as well as of the 
ow of sediment, biomass,and pollutants. The downstream e�ects
of chemicals being released at a node, for instance, could bemodeled along the lines presented here. We
expect such models to shed further light on the complex and important problems of transport on river
networks.

In [Zaliapin et al., 2003a,b], a BDE model ofcolliding cascadeson a ternary tree that represents
a network of successively smaller scales in Earth's crust was studied. Seismic load cascades down from
the largest scales or \plates" to the smallest, while failures cascade up from the smallest to the largest
plates. It would clearly be of interest to study failure propagation on more complex fault networks of DRG
type. Similar generalizations could be formulated for the heterogeneous models of forest �res introduced
in [Spyratos et al., 2007].
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Appendix A Braid chain with k = 1

In this appendix, we evaluate the average total number of impaired �rms h� (t; T )i in the free model on a
braid chain with k = 1. This number can be expressed, by using Eqs. (9) and (11), as a function of the
probability P(Tn ; n), where Tn is the sum of n random variables � ij :

h� (t; T )i � h
NX

i =1

x i (t)i �
NX

i =1

Z Y
dT P(T )x i � n (t � Tn ) =

=
[t ]� maxX

n=[ t=� max ]+1

P([t]; n)
NX

i =1

� i � n;1 =
[t ]� maxX

n=[ t=� max ]+1

P([t]; n): (48)

Here [v] means the integer part of v, and we are assuming for simplicity that the duration of the initial
damage is � c = � min = 1 day, hence we are using the conditions on the initial stateof the system,
f x i (t) = � i; 1g for t 2 [0; 1].

One has, for integer delays uniformly distributed in the interval [� min ; � max ]:

h� ij i =
Z � max

1
dT P(T )� ij =

(� max + 1)
2

(49)

� 2
� ij

=
(� max + 1)(2 � max + 1)

6
�

(� max + 1) 2

4
; (50)

for the mean value and the variance of the distribution of thedelays, respectively. Forn � 2, assuming that
the variables are independent (which is clearly an approximation for n > N ), one can apply the central
limit theorem:

P(Tn ; n) ' P G(Tn ; n) =
1

q
2�n� 2

� ij

exp

 

�
(Tn � nh� ij i )2

2n� 2
� ij

!

: (51)
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By using this approach, we �nd:

h� (t; T )i '

8
>>><

>>>:

1 t 2 [0; 1)
P(1; 1) = 1=�max t 2 [1; 2)
1=�max +

P ([ t ]� max )
n=2 PG([t]; n) t 2 [[t]; [t ] + 1) ; 2 � t � � maxP ([ t ]� max )

n=[ t=� max ]+1 PG([t]; n) t 2 [[t]; [t ] + 1) ; t > � max

(52)

where the sums are clearly dominated by the terms corresponding to n� h� ij i ' [t ], i.e. the same that are
best approximated by the Gaussian distribution. The corresponding average density can be straightaway
obtained from Eq. (10).

In the large t limit, h� (t; T )i approaches quite rapidly a nearly constant value, that in the numerically
studied case of� max = 10 is found to be:

lim
t !1

h� (t; T )i ' lim
t !1

[t ]� maxX

n=[[ t ]=� max ]+1

PG([t]; n) ' 0:182; (53)

which gives, again from Eq. (10):

h� 1 (T )i = lim
t !1

h� (t; T )i = 1 �
0:182

N
: (54)

Appendix B Braid chain with k � 2

In this appendix, we obtain analytical estimates for the evolution in time of the average total number of
impaired �rms h� (t; T )i in the free model on a braid chain with with connectivity of k = 2 or higher, and
hence for the corresponding decay rates of the densityh� (t)i = 1 � h � (t; T )i =N of healthy �rms. By using
De Morgan's law a ^ b = a _ b, Eq. (12), de�ning the free model on the circulant matrix, tu rns out to be
equivalent to:

x i (t) =
kX

j =1

x i � j (t � � i;i � j ); (55)

which, in the case of equal delaysf � ij = � 0 8i; j g, allows the simpli�cation:

x i (t) =
kX

j 1=1

kX

j 2=1

x i � j 1 � j 2 (t � 2� 0) =

=
kX

j 1=1

kX

j 2=1

� � �
kX

j n =1

x i � j 1 � j 2 � :::� j n (t � n� 0) =

=
nkX

j = n

x i � j (t � n� 0); (56)

since the di�erent terms containing the same argument are redundant. Hence, by choosingn = [ t=� 0] = [ t],
one gets:

� (t) =
NX

i =1

x i (t) =
[t ]kX

j =[ t ]

x i � j (t � [t ]) = [ t](k � 1) + 1 for t 2 [[t]; [t ] + 1) ; (57)

where we are assuming [t](k � 1) + 1 � N , and we used the conditions on the initial state of the system,
f x i � j (t) = � i � j; 1 for t 2 [0; � c)g, by considering for simplicity a duration of the initial dam age� c = � 0. This
analysis con�rms that, as soon ask � 2, the system is dissipative, and in particular the total number of
impaired �rms (a constant function in each time step) is linearly increasing with time, with slope k � 1.
Correspondingly, for a �nite size N , the asymptotically stable solution f x i � 0 8ig, and the zero limit
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value of the density, are attained after the time T0 ' (N � 1)=(k � 1), in agreement with Eq. (16). One
can moreover analogously show that, for� c 6= � 0, the density is still linearly decreasing with time, and the
asymptotic solution is the same as for� c > � 0, whereas it is periodic of period� 0 for � c < � 0, as described
in Section 3.4.

In order to work out the same approach for randomly distributed delays, we labellh =
P h

v=1 j v . One
�nds:

x i (t) =
kX

j 1=1

kX

j 2=1

� � �
kX

j n =1

x i � ln

 

t �
nX

h=0

� i � lh ;i � lh +1

!

=

=
nkX

j = n

X

f l1 ;l2 ;:::;l n g:ln = j

x i � j

 

t �
nX

h=0

� i � lh ;i � lh +1

!

: (58)

Since thef � ij g are independent identically distributed random variableswhich take integer values (in � min
unities) in the interval [1 ; � max ], it follows that their sums Tn =

P n
h=0 � i � lh ;i � lh +1 take integer values in the

interval [ n; n� max ] with probability P(Tn ; n); moreover, termsx i � j with the same argument are redundant.
The average over the disorder can be therefore computed as:

hx i (t)i =
Z Y

dT P(T )x i (t) =

=
nkX

j = n

n� maxX

Tn = n

P(Tn ; n)x i � j (t � T n ): (59)

Then, one can choose in particularn values in the di�erent terms such that t � T n is always in the initial
interval; in detail, looking for simplicity only at t values which are integer multiple of � max , one has:

hx i (t)i =

2

4
ktX

j = t

Pt (t; t ) +
k(t � 1)X

j = t � 1

Pt (t; t � 1) + :::

::: +
kt=� maxX

j = t=� max

Pt (t; t=� max )

3

5 x i � j (0) =

=
tX

j = t=� max

kjX

n= j

Pt (t; j )� i � j; 1; (60)

and therefore, up to the time T0(T ) at which h� (T0(T ); T )i ' N , one has:

h� (t; T )i =
tX

n= t=� max

[(k � 1)n + 1]Pt (t; k ): (61)

Here, Pt (t; n ) is the probability for the signal to have propagated n steps along the chain at timet, which
can be approximated by a Gaussian with mean valuenh� ij i and variancen� 2

i;j (see Eq. (51)), but needs to
be correctly normalized in order to get:

tX

n= t=� max

Pt (t; n ) = 1 8t: (62)

In detail, we take Pt (t; n ) ' C(t)PG(t; n ), where the normalization constant C(t) approaches rapidly its
large time limit C1 ' 1=0:182, in agreement with Eq. (53).

These results therefore con�rm, from a di�erent point of view , the analysis of Section 3.5; in particular,
for the case ofn = 20 and � max = 10, the density h� (t; T )i = 1 � h � (t; T )i =N obtained with this approach
is in very good agreement with the numerical data, as shown in[Fig. 6].



May 13, 2011 15:57 BC_MG_SH_GW-BDE_Econ-IJBC_v


41

Appendix C Random graphs

Here we brie
y recall the framework of generating functionsfrom probability theory [Newman et al., 2001;
Dorogovtsev et al., 2001]. Generating functions allow one to evaluate in a fairly straightforward manner
the size of connected components in Erd}os-R�enyi random graphs. They are, moreover, well suited for
generalization to DRGs and to probability distributions P(k) of the degree of a node other than Poisson.

One de�nes:

G0(y) =
1X

k=0

P(k)yk ; (63)

which implies:

P(k) =
1
k!

dk

dyk G0(y)

�
�
�
�
y=0

: (64)

The generating function for the probability distribution P1(k) to have k edges leaving a node, apart the
one from which the signal arrived, is given by:

G1(y) =
1X

k=0

P1(k)yk =
P 1

k=0 (k + 1) P(k + 1) yk
P 1

k=0 kP(k)
=

G0
0(y)
z

; (65)

and in the Erd}os-Renyi random graph one has:

G0(y) = G1(y) = ez(y� 1) : (66)

A key property of these functions is that, if G is the generating function for the probability of some
property of an object, then the probability of the sum of the same property on l independent objects is
generated byGl . Hence, if H 0(x) is the generating function for the distribution probabili ty of the sizes of
the connected components,i.e. of the nodes which can be reached from a randomly chosen one, and H 1(x)
is the one of the clusters that can be reached from the end of one of the edges of a randomly chosen one,
one has

H 0(y) =
1X

l=0

P(l) [H 1(y)] l = yG0[H 1(y)];

H 1(y) = y
1X

l=0

P1(l ) [H 1(y)] l = yG1[H 1(y)]: (67)

These equations can, in principle, be solved self-consistently. Most importantly for the problem at hand,
one gets immediately the mean connected component size:

� below the transition

hsi = H 0
0(1) = 1 + G0

0(1)H 0
1(1) = 1 +

G0
0(1)

1 � G 0
1(1)

; (68)

which means, as expected in the Erd}os-R�enyi random graph,that

hsi =
1

1 � z
; (69)

� above the transition, H 0(x) and H 1(x) can be de�ned as the generating functions for the probability
distribution of the �nite-size connected components, which have still a tree-like structure; correspondingly
H0(1) = r < 1, and one has

�
sgc = 1 � r = 1 � G 0(r )
r = G1(r )

; (70)

which for Erd}os-R�enyi random graphs gives r = ez(r � 1) , i.e. Eq. (34).
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