Boers, N., M. D. Chekroun, H. Liu, D. Kondrashov, D.-D. Rousseau, A. Svensson, M. Bigler, and M. Ghil. 2017. “Inverse stochastic-dynamic models for high-resolution Greenland ice-core records.” Earth System Dynamics 8: 1171–1190. Publisher's Version Abstract

Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP) and we focus on the time interval 59 ka–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data; (ii) cubic drift terms; (iii) nonlinear coupling terms between the δ18O and dust time series; and (iv) non-Markovian contributions that represent short-term memory effects.

Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2017. “The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories.” Computers & Fluids 151: 3-22. Publisher's Version Abstract

The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast inertia-gravity oscillations have long been considered an impediment to initialization of weather forecasts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized. It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby number is crossed, in contradistinction with fast oscillations emerging according to an exponential smallness scenario such as reported in previous studies, including some others by Lorenz. The consequences of this dynamical transition on the closure problem based on slow variables is also discussed. In that respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This framework allows for a unification of previous concepts such as the slow manifold or other concepts of “fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through detailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the emergence of fast and energetic oscillations.


Dijkstra, Henk A, Alexis Tantet, Jan Viebahn, Erik Mulder, Mariët Hebbink, Daniele Castellana, Henri van den Pol, et al. 2016. “A numerical framework to understand transitions in high-dimensional stochastic dynamical systems.” Dynamics and Statistics of the Climate System 1 (1): 1-27. Publisher's Version Abstract

Dynamical systems methodology is a mature complementary approach to forward simulation which can be used to investigate many aspects of climate dynamics. With this paper, a review is given on the methods to analyze deterministic and stochastic climate models and show that these are not restricted to low-dimensional toy models, but that they can be applied to models formulated by stochastic partial differential equations. We sketch the numerical implementation of these methods and illustrate these by showing results for two canonical problems in climate dynamics.

Chekroun, Mickaël D., Eunhee Park, and Roger Temam. 2016. “The Stampacchia maximum principle for stochastic partial differential equations and applications.” Journal of Differential Equations 260 (3): 2926 - 2972. Publisher's Version Abstract
Abstract Stochastic partial differential equations (SPDEs) are considered, linear and nonlinear, for which we establish comparison theorems for the solutions, or positivity results a.e., and a.s., for suitable data. Comparison theorems for \SPDEs\ are available in the literature. The originality of our approach is that it is based on the use of truncations, following the Stampacchia approach to maximum principle. We believe that our method, which does not rely too much on probability considerations, is simpler than the existing approaches and to a certain extent, more directly applicable to concrete situations. Among the applications, boundedness results and positivity results are respectively proved for the solutions of a stochastic Boussinesq temperature equation, and of reaction–diffusion equations perturbed by a non-Lipschitz nonlinear noise. Stabilization results to a Chafee–Infante equation perturbed by a nonlinear noise are also derived.
Kondrashov, Dmitri, Mickaël D. Chekroun, and Michael Ghil. 2016. “Comment on ``Nonparametric forecasting of low-dimensional dynamical systems''.” Phys. Rev. E 93. American Physical Society: 036201. Publisher's Version Abstract

The comparison performed in Berry et al. [Phys. Rev. E 91, 032915 (2015)] between the skill in predicting the El Niño-Southern Oscillation climate phenomenon by the prediction method of Berry et al. and the “past-noise” forecasting method of Chekroun et al. [Proc. Natl. Acad. Sci. USA 108, 11766 (2011)] is flawed. Three specific misunderstandings in Berry et al. are pointed out and corrected.

Chen, C., M. Cane, N. Henderson, D. Lee, D. Chapman, D. Kondrashov, and M. D. Chekroun. 2016. “Diversity, nonlinearity, seasonality and memory effect in ENSO simulation and prediction using empirical model reduction.” Journal of Climate 29 (5): 1809–1830. Publisher's Version Abstract

A suite of empirical model experiments under the empirical model reduction framework are conducted to advance the understanding of ENSO diversity, nonlinearity, seasonality, and the memory effect in the simulation and prediction of tropical Pacific sea surface temperature (SST) anomalies. The model training and evaluation are carried out using 4000-yr preindustrial control simulation data from the coupled model GFDL CM2.1. The results show that multivariate models with tropical Pacific subsurface information and multilevel models with SST history information both improve the prediction skill dramatically. These two types of models represent the ENSO memory effect based on either the recharge oscillator or the time-delayed oscillator viewpoint. Multilevel SST models are a bit more efficient, requiring fewer model coefficients. Nonlinearity is found necessary to reproduce the ENSO diversity feature for extreme events. The nonlinear models reconstruct the skewed probability density function of SST anomalies and improve the prediction of the skewed amplitude, though the role of nonlinearity may be slightly overestimated given the strong nonlinear ENSO in GFDL CM2.1. The models with periodic terms reproduce the SST seasonal phase locking but do not improve the prediction appreciably. The models with multiple ingredients capture several ENSO characteristics simultaneously and exhibit overall better prediction skill for more diverse target patterns. In particular, they alleviate the spring/autumn prediction barrier and reduce the tendency for predicted values to lag the target month value.

Pierini, S., M. Ghil, and M. Chekroun. 2016. “Exploring the pullback attractors of a low-order quasigeostrophic ocean model: the deterministic case.” Journal of Climate 29 (11): 4185-4202. Publisher's Version Abstract

A low-order quasigeostrophic double-gyre ocean model is subjected to an aperiodic forcing that mimics time dependence dominated by interdecadal variability. This model is used as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The study relies on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), that is, of the time-dependent invariant sets attracting all trajectories initialized in the remote past. The existence of a global PBA is rigorously demonstrated for this weakly dissipative nonlinear model. Ensemble simulations are carried out and the convergence to PBAs is assessed by computing the probability density function (PDF) of localization of the trajectories. A sensitivity analysis with respect to forcing amplitude shows that the PBAs experience large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while less dramatic changes occur in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is then analyzed. Two types of basins of attraction coexist for certain parameter ranges; they contain chaotic and nonchaotic trajectories, respectively. The statistics of the former does not depend on the initial states whereas the trajectories in the latter converge to small portions of the global PBA. This complex scenario requires separate PDFs for chaotic and nonchaotic trajectories. General implications for climate predictability are finally discussed.

Chekroun, Mickaël D., Michael Ghil, Honghu Liu, and Shouhong Wang. 2016. “Low-dimensional Galerkin approximations of nonlinear delay differential equations.” Discrete and Continuous Dynamical Systems 36 (8): 4133-4177. Publisher's Version Abstract

This article revisits the approximation problem of systems of nonlinear delay differential equations (DDEs) by a set of ordinary differential equations (ODEs). We work in Hilbert spaces endowed with a natural inner product including a point mass, and introduce polynomials orthogonal with respect to such an inner product that live in the domain of the linear operator associated with the underlying DDE. These polynomials are then used to design a general Galerkin scheme for which we derive rigorous convergence results and show that it can be numerically implemented via simple analytic formulas. The scheme so obtained is applied to three nonlinear DDEs, two autonomous and one forced: (i) a simple DDE with distributed delays whose solutions recall Brownian motion; (ii) a DDE with a discrete delay that exhibits bimodal and chaotic dynamics; and (iii) a periodically forced DDE with two discrete delays arising in climate dynamics. In all three cases, the Galerkin scheme introduced in this article provides a good approximation by low-dimensional ODE systems of the DDE's strange attractor, as well as of the statistical features that characterize its nonlinear dynamics.

Chekroun, M. D., and H. Liu. 2016. “Post-processing finite-horizon parameterizing manifolds for optimal control of nonlinear parabolic PDEs.” 2016 IEEE 55th Conference on Decision and Control (CDC), 1411-1416. Las Vegas, USA: IEEE. Publisher's version Abstract

The goal of this article is to propose an efficient way of empirically improving suboptimal solutions designed from the recent method of finite-horizon parameterizing manifolds (PMs) introduced by Chekroun and Liu (Acta Appl. Math., 2015) and concerned with the (sub)optimal control of nonlinear parabolic partial differential equations (PDEs). Given a finite horizon [0, T ] and a reduced low-mode phase space, a finite-horizon PM provides an approximate parameterization of the high modes by the low ones so that the unexplained high-mode energy is reduced — in an L 2-sense — when this parameterization is applied. In Chekroun and Liu (Acta Appl. Math., 2015), various PMs were constructed analytically from the uncontrolled version of the underlying PDE that allow for the design of reduced systems from which low-dimensional suboptimal controllers can be efficiently synthesized. In this article, the analytic approach from Chekroun and Liu (Acta Appl. Math., 2015) is recalled and a post-processing procedure is introduced to improve the PM-based suboptimal controllers. It consists of seeking for a high-mode parametrization aiming to reduce the energy contained in the high modes of the PDE solution, when the latter is driven by a PM-based suboptimal controller. This is achieved by solving simple regression problems. The skills of the resulting empirically post-processed suboptimal controllers are numerically assessed for an optimal control problem associated with a Burgers-type equation.

Chekroun, Mickaël D., and Honghu Liu. 2015. “Finite-Horizon Parameterizing Manifolds, and Applications to Suboptimal Control of Nonlinear Parabolic PDEs.” Acta Applicandae Mathematicae 135 (1): 81–144. Publisher's Version Abstract

This article proposes a new approach based on finite-horizon parameterizing manifolds (PMs) for the design of low-dimensional suboptimal controllers to optimal control problems of nonlinear partial differential equations (PDEs) of parabolic type. Given a finite horizon [0,T] and a low-mode truncation of the PDE, a PM provides an approximate parameterization of the uncontrolled high modes by the controlled low ones so that the unexplained high-mode energy is reduced, in an L2-sense, when this parameterization is applied. Analytic formulas of such PMs are derived by application of the method of pullback approximation of the high-modes. These formulas allow for an effective derivation of reduced ODE systems, aimed to model the evolution of the low-mode truncation of the controlled state variable, where the high-mode part is approximated by the PM function applied to the low modes. A priori error estimates between the resulting PM-based low-dimensional suboptimal controller u_R* and the optimal controller u* are derived. These estimates demonstrate that the closeness of u_R* to u*? is mainly conditioned on two factors: (i) the parameterization defect of a given PM, associated respectively with u_R* and u*; and (ii) the energy kept in the high modes of the PDE solution either driven by u_R* or u* itself. The practical performances of such PM-based suboptimal controllers are numerically assessed for various optimal control problems associated with a Burgers-type equation. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results. The practical performances of such PM-based suboptimal controllers are numerically assessed for optimal control problems associated with a Burgers-type equation; the locally as well as globally distributed cases being both considered. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results.

Kondrashov, Dmitri, Mickaël D. Chekroun, and Michael Ghil. 2015. “Data-driven non-Markovian closure models.” Physica D: Nonlinear Phenomena 297: 33 - 55. Publisher's Version Abstract
Abstract This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori–Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of \MSMs\ can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the \MZ\ formalism. A simple correlation-based stopping criterion for an EMR–MSM model is derived to assess how well it approximates the \GLE\ solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given \MSM\ to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of \MSM\ applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR–MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an \MSM\ is shown to successfully reproduce the statistics of a partially observed, generalized Lotka–Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model’s parameter space and the existence of multiple attractor basins with fractal boundaries. The positivity constraint on the solutions’ components replaces here the quadratic-energy–preserving constraint of fluid-flow problems and it successfully prevents blow-up.
Chekroun, Mickaël D., Honghu Liu, and Shouhong Wang. 2015. Approximation of Stochastic Invariant Manifolds : Stochastic Manifolds for Nonlinear SPDEs I. New York: Springer Briefs in Mathematics, Springer, pp. 127. Publisher's Version Abstract

This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations  take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.

A.Bousquet,, M. D. Chekroun, Y. Hong, R. Temam, and J. Tribbia. 2015. “Numerical simulations of the humid atmosphere above a mountain.” Mathematics of Climate and Weather Forecasting 1 (1): 96-126. Publisher's Version Abstract

New avenues are explored for the numerical study of the two dimensional inviscid hydrostatic primitive equations of the atmosphere with humidity and saturation, in presence of topography and subject to physically plausible boundary conditions for the system of equations. Flows above a mountain are classically treated by the so-called method of terrain following coordinate system. We avoid this discretization method which induces errors in the discretization of tangential derivatives near the topography. Instead we implement a first order finite volume method for the spatial discretization using the initial coordinates x and p. A compatibility condition similar to that related to the condition of incompressibility for the Navier- Stokes equations, is introduced. In that respect, a version of the projection method is considered to enforce the compatibility condition on the horizontal velocity field, which comes from the boundary conditions. For the spatial discretization, a modified Godunov type method that exploits the discrete finite-volume derivatives by using the so-called Taylor Series Expansion Scheme (TSES), is then designed to solve the equations. We report on numerical experiments using realistic parameters. Finally, the effects of a random small-scale forcing on the velocity equation is numerically investigated.

Chekroun, Mickaël D., Honghu Liu, and Shouhong Wang. 2015. Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations : Stochastic Manifolds for Nonlinear SPDEs II. New York: Springer Briefs in Mathematics, Springer, pp. 129. Publisher's Version Abstract

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

Roques, Lionel, Mickaël D. Chekroun, Michel Cristofol, Samuel Soubeyrand, and Michael Ghil. 2014. “Parameter estimation for energy balance models with memory.” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 470 (2169). The Royal Society. Publisher's Version Abstract
We study parameter estimation for one-dimensional energy balance models with memory (EBMMs) given localized and noisy temperature measurements. Our results apply to a wide range of nonlinear, parabolic partial differential equations with integral memory terms. First, we show that a space-dependent parameter can be determined uniquely everywhere in the PDE’s domain of definition D, using only temperature information in a small subdomain E⊂D. This result is valid only when the data correspond to exact measurements of the temperature. We propose a method for estimating a model parameter of the EBMM using more realistic, error-contaminated temperature data derived, for example, from ice cores or marine-sediment cores. Our approach is based on a so-called mechanistic-statistical model that combines a deterministic EBMM with a statistical model of the observation process. Estimating a parameter in this setting is especially challenging, because the observation process induces a strong loss of information. Aside from the noise contained in past temperature measurements, an additional error is induced by the age-dating method, whose accuracy tends to decrease with a sample’s remoteness in time. Using a Bayesian approach, we show that obtaining an accurate parameter estimate is still possible in certain cases.
Chekroun, M. D., J. D. Neelin, D. Kondrashov, J. C. McWilliams, and M. Ghil. 2014. “Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonance.” Proceeding of the National Academy of Sciences 111 (5): 1684—1690. Publisher's Version Abstract

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.


Chekroun, M. D., and J. Roux. 2013. “Homeomorphisms group of normed vector spaces : The conjugacy problem and the Koopman operator.” Discrete and Continuous Dynamical Systems (DCDS-A) 33 (9): 3957—3950. Publisher's Version Abstract

This article is concerned with conjugacy problems arising in the homeomorphisms group, Hom(F), of unbounded subsets F of normed vector spaces E. Given two homeomorphisms f and g in Hom(F), it is shown how the existence of a conjugacy may be related to the existence of a common generalized eigenfunction of the associated Koopman operators. This common eigenfunction serves to build a topology on Hom(F), where the conjugacy is obtained as limit of a sequence generated by the conjugacy operator, when this limit exists. The main conjugacy theorem is presented in a class of generalized Lipeomorphisms.

Kondrashov, K., M. D. Chekroun, A. W. Robertson, and M. Ghil. 2013. “Low-order stochastic model and “past-noise forecasting” of the Madden-Julian oscillation.” Geophysical Research Letters 40 (19): 5303—5310. Publisher's Version Abstract

This paper presents a predictability study of the Madden-Julian Oscillation (MJO) that relies on combining empirical model reduction (EMR) with the “past-noise forecasting” (PNF) method. EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity, seasonality and serial correlation in the estimated noise, while PNF constructs an ensemble of forecasts that accounts for interactions between (i) high-frequency variability (noise), estimated here by EMR, and (ii) the low-frequency mode of MJO, as captured by singular spectrum analysis (SSA). A key result is that—compared to an EMR ensemble driven by generic white noise—PNF is able to considerably improve prediction of MJO phase. When forecasts are initiated from weak MJO conditions, the useful skill is of up to 30 days. PNF also significantly improves MJO prediction skill for forecasts that start over the Indian Ocean.

Chekroun, Mickaël D., and Nathan E. Glatt-Holtz. 2012. “Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications.” Communications in Mathematical Physics 316 (3): 723–761. Publisher's Version Abstract
In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup \S(t)\ t ≥ 0. Suppose that \S(t)\ t ≥ 0 possesses a global attractor \$\$\\backslashmathcal\A\\\$\$ . We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions \$\$\\backslashmathfrak\m\\_0\\$\$ , that there exists an invariant probability measure \$\$\\backslashmathfrak\m\\\$\$ , whose support is contained in \$\$\\backslashmathcal\A\\\$\$ , such that \$\$\backslashint\_\X\ \backslashvarphi(x) \\backslashrm d\\backslashmathfrak\m\(x) = \backslashunderset\t \backslashrightarrow \backslashinfty\\\backslashrm LIM\\backslashfrac\1\\T\ \backslashint\_0^T \backslashint\_X \backslashvarphi(S(t) x) \\backslashrm d\\backslashmathfrak\m\\_0(x) \\backslashrm d\t,\$\$ for all observables $\phi$ living in a suitable function space of continuous mappings on X.
Roques, Lionel, and Mickaël D. Chekroun. 2011. “Probing chaos and biodiversity in a simple competition model.” Ecological Complexity 8 (1): 98 - 104. Publisher's Version Abstract
Recent theoretical work has reported that chaos facilitates biodiversity. In this paper, we study the lowest-dimensional Lotka–Volterra competition model that exhibits chaotic trajectories, a model with four species. We observe that interaction and growth parameters leading respectively to extinction of three species, or coexistence of two, three or four species, are for the most part arranged in large regions with clear boundaries. Small islands of parameters that lead to chaos are also found. These regions where chaos occurs are, in the three cases presented here, situated at the interface between a non-chaotic four-species region and a region where extinction occurs. This implies a high sensitivity of biodiversity with respect to parameter variations in the chaotic regions. Additionally, in regions where extinction occurs which are adjacent to chaotic regions, the computation of local Lyapunov exponents reveals that a possible cause of extinction is the overly strong fluctuations in species abundances induced by local chaos at the beginning of the interval of study. For this model, we conclude that biodiversity is a necessary condition for chaos rather than a consequence of chaos, which can be seen as a signal of a high extinction risk.