### Citation:

### Date Published:

2018### Abstract:

In this article it is proved that the dynamical properties of a broad class of semilinear parabolic problems are sensitive to arbitrarily small but smooth perturbations of the nonlinear term, when the spatial dimension is either equal to one or two. This topological instability is shown to result from a local deformation of the global bifurcation diagram associated with the corresponding elliptic problems. Such a deformation is shown to systematically occur via the creation of either a multiple-point or a new fold-point on this diagram when an appropriate small perturbation is applied to the nonlinear term. More precisely, it is shown that for a broad class of nonlinear elliptic problems, one can always find an arbitrary small perturbation of the nonlinear term, that generates a local S on the bifurcation diagram whereas the latter is e.g. monotone when no perturbation is applied; substituting thus a single solution by several ones. Such an increase in the local multiplicity of the solutions to the elliptic problem results then into a topological instability for the corresponding parabolic problem.

The rigorous proof of the latter instability result requires though to revisit the classical concept of topological equivalence to encompass important cases for the applications such as semi-linear parabolic problems for which the semigroup may exhibit non-global dissipative properties, allowing for the coexistence of blow-up regions and local attractors in the phase space; cases that arise e.g. in combustion theory. A revised framework of topological robustness is thus introduced in that respect within which the main topological instability result is then proved for continuous, locally Lipschitz but not necessarily C1 nonlinear terms, that prevent in particular the use of linearization techniques, and for which the family of semigroups may exhibit non-dissipative properties.

*Last updated on 03/28/2023*