Nonlinear Dynamics

Submitted
We introduce a generalization of linear response theory for mixed jump-diffusion models, combining both Gaussian and Lévy noise forcings that interact with the nonlinear dynamics. This class of models covers a broad range of stochastic chaos and complexity for which the jump-diffusion processes are a powerful tool to parameterize the missing physics or effects of the unresolved scales onto the resolved ones.
By generalizing concepts such as Kolmogorov operators and Green's functions to this context, we derive fluctuation-dissipation relationships for such models. The system response can then be interpreted in terms of contributions from the eigenmodes of the Kolmogorov operator (Kolmogorov modes) decomposing the time-lagged correlation functions of the unperturbed dynamics. The underlying formulas offer a fresh look on the intimate relationships between the system's natural variability and its forced variability.
We apply our theory to a paradigmatic El Niño-Southern Oscillation (ENSO) subject to state-dependent jumps and additive white noise parameterizing intermittent and nonlinear feedback mechanisms, key factors in the actual ENSO phenomenon. Such stochastic parameterizations are shown to produce stochastic chaos with an enriched time-variability. The Kolmogorov modes encoding the latter are then computed, and our Green's functions formulas are shown to achieve a remarkable accuracy to predict the system's response to perturbations.
This work enriches Hasselmann's program by providing a more comprehensive approach to climate modeling and prediction, allowing for accounting the effects of both continuous and discontinuous stochastic forcing. Our results have implications for understanding climate sensitivity, detection and attributing climate change, and assessing the risk of climate tipping points.
2024
Santos Gutiérrez, Manuel, Mickaël D. Chekroun, and Ilan Koren. 2024. “Gibbs states and Brownian models for haze and cloud droplets.” Science Advances 10 (46): eadq7518. Publisher's version Abstract
Cloud microphysics studies include how tiny cloud droplets grow and become rain. This is crucial for understanding cloud properties like size, life span, and impact on climate through radiative effects. Small weak-updraft clouds near the haze-to-cloud transition are especially difficult to measure and understand. They are abundant but hard to capture by satellites. Köhler’s theory explains initial droplet growth but struggles with large particle groups. Here, we present a stochastic, analytical framework building on Köhler’s theory to account for (monodisperse) aerosols and cloud droplet interaction through competitive growth in a limited water vapor field. These interactions are modeled by sink terms, while fluctuations in supersaturation affecting droplet growth are modeled by nonlinear white noise terms. Our results identify hysteresis mechanisms in the droplet activation and deactivation processes. Our approach allows for multimodal cloud’s droplet size distributions supported by laboratory experiments, offering a different perspective on haze-to-cloud transition and small cloud formation.
sciadv.adq7518.pdf

Conceptual delay models have played a key role in the analysis and understanding of El Niño-Southern Oscillation (ENSO) variability. Based on such delay models, we propose in this work a novel scenario for the fabric of ENSO variability resulting from the subtle interplay between stochastic disturbances and nonlinear invariant sets emerging from bifurcations of the unperturbed dynamics.

To identify these invariant sets we adopt an approach combining Galerkin-Koornwinder (GK) approximations of delay differential equations and center-unstable manifold reduction techniques. In that respect, GK approximation formulas are reviewed and synthesized, as well as analytic approximation formulas of center-unstable manifolds. The reduced systems derived thereof enable us to conduct a thorough analysis of the bifurcations arising in a standard delay model of ENSO. We identify thereby a saddle-node bifurcation of periodic orbits co-existing with a subcritical Hopf bifurcation, and a homoclinic bifurcation for this model. We show furthermore that the computation of unstable periodic orbits (UPOs) unfolding through these bifurcations is considerably simplified from the reduced systems.

These dynamical insights enable us in turn to design a stochastic model whose solutions—as the delay parameter drifts slowly through its critical values—produce a wealth of temporal patterns resembling ENSO events and exhibiting also decadal variability. Our analysis dissects the origin of this variability and shows how it is tied to certain transition paths between invariant sets of the unperturbed dynamics (for ENSO’s interannual variability) or simply due to the presence of UPOs close to the homoclinic orbit (for decadal variability). In short, this study points out the role of solution paths evolving through tipping “points” beyond equilibria, as possible mechanisms organizing the variability of certain climate phenomena.

Chekroun, Mickaël D., H. Liu, K. Srinivasan, and James C. McWilliams. 2024. “The High-Frequency and Rare Events Barriers to Neural Closures of Atmospheric Dynamics.” Journal of Physics: Complexity 5: 025004. Publisher's version Abstract
Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.
2023
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2023. “Optimal parameterizing manifolds for anticipating tipping points and higher-order critical transitions.” Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (9): 093126. Publisher's Version Abstract
A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of “slaving” occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary backward–forward systems built from the model’s equations and lead to analytic formulas for parameterizations. In this modus operandi, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place.
2022
Chekroun, Mickaël D., Ilan Koren, Honghu Liu, and Huan Liu. 2022. “Generic generation of noise-driven chaos in stochastic time delay systems: Bridging the gap with high-end simulations.” Science Advances 8 (46): eabq7137. Publisher's Version Abstract

Nonlinear time delay systems produce inherently delay-induced periodic oscillations, which are, however, too idealistic compared to observations. We exhibit a unified stochastic framework to systematically rectify such oscillations into oscillatory patterns with enriched temporal variabilities through generic, nonlinear responses to stochastic perturbations. Two paradigms of noise-driven chaos in high dimension are identified, fundamentally different from chaos triggered by parameter-space noise. Noteworthy is a low-dimensional stretch-and-fold mechanism, leading to stochastic strange attractors exhibiting horseshoe-like structures mirroring turbulent transport of passive tracers. The other is high-dimensional , with noise acting along the critical eigendirection and transmitted to deeperstable modes through nonlinearity, leading to stochastic attractors exhibiting swarm-like behaviors with power-law and scale break properties. The theory is applied to cloud delay models to parameterize missing physics such as intermittent rain and Lagrangian turbulent effects. The stochastically rectified model reproduces with fidelity complex temporal variabilities of open-cell oscillations exhibited by high-end cloud simulations.

Chekroun, Mickaël D., Henk A. Dijkstra, Taylan Şengül, and Shouhong Wang. 2022. “Transitions of zonal flows in a two- layer quasi-geostrophic ocean model.” Nonlinear Dynamics . Publisher's version Abstract
We consider a 2-layer quasi-geostrophic ocean model where the upper layer is forced by a steady Kolmogorov wind stress in a periodic channel domain, which allows to mathematically study the nonlinear development of the resulting flow. The model supports a steady parallel shear flow as a response to the wind stress. As the maximal velocity of the shear flow (equivalently the maximal amplitude of the wind forcing) exceeds a critical threshold, the zonal jet destabilizes due to baroclinic instability and we numerically demonstrate that a first transition occurs. We obtain reduced equations of the system using the formalism of dynamic transition theory and establish two scenarios which completely describe this first transition. The generic scenario is that two modes become critical and a Hopf bifurcation occurs as a result. Under an appropriate set of parameters describing midlatitude oceanic flows, we show that this first transition is continuous: a supercritical Hopf bifurcation occurs and a stable time periodic solution bifurcates. We also investigate the case of double Hopf bifurcations which occur when four modes of the linear stability problem simultaneously destabilize the zonal jet. In this case we prove that, in the relevant parameter regime, the flow exhibits a continuous transition accompanied by a bifurcated attractor homeomorphic to S^3. The topological structure of this attractor is analyzed in detail and is shown to depend on the system parameters. In particular, this attractor contains
(stable or unstable) time-periodic solutions and a quasi-periodic solution.
2021
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2021. “Stochastic rectification of fast oscillations on slow manifold closures.” Proc. Natl. Acad. Sci. 118 (48): E2113650118. Publisher's Version Abstract
The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.
Charó, Gisela D., Mickaël D. Chekroun, Denisse Sciamarella, and Michael Ghil. 2021. “Noise-driven topological changes in chaotic dynamics.” Chaos 31 (10): 103115. Publisher's Version Abstract

Noise modifies the behavior of chaotic systems in both quantitative and qualitative ways. To study these modifications, the present work compares the topological structure of the deterministic Lorenz (1963) attractor with its stochastically perturbed version. The deterministic attractor is well known to be “strange” but it is frozen in time. When driven by multiplicative noise, the Lorenz model’s random attractor (LORA) evolves in time. Algebraic topology sheds light on the most striking effects involved in such an evolution. In order to examine the topological structure of the snapshots that approximate LORA, we use branched manifold analysis through homologies—a technique originally introduced to characterize the topological structure of deterministically chaotic flows—which is being extended herein to nonlinear noise-driven systems. The analysis is performed for a fixed realization of the driving noise at different time instants in time. The results suggest that LORA’s evolution includes sharp transitions that appear as topological tipping points.

Santos Gutiérrez, Manuel, Valerio Lucarini, Mickaël D. Chekroun, and Michael Ghil. 2021. “Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator.” Chaos 31: 053116. Publisher's Version Abstract
Providing efficient and accurate parameterizations for model reduction is a key goal in many areas of science and technology. Here, we present a strong link between data-driven and theoretical approaches to achieving this goal. Formal perturbation expansions of the Koopman operator allow us to derive general stochastic parameterizations of weakly coupled dynamical systems. Such parameterizations yield a set of stochastic integrodifferential equations with explicit noise and memory kernel formulas to describe the effects of unresolved variables. We show that the perturbation expansions involved need not be truncated when the coupling is additive. The unwieldy integrodifferential equations can be recast as a simpler multilevel Markovian model, and we establish an intuitive connection with a generalized Langevin equation. This connection helps setting up a parallelism between the top-down, equation-based methodology herein and the well-established empirical model reduction (EMR) methodology that has been shown to provide efficient dynamical closures to partially observed systems. Hence, our findings, on the one hand, support the physical basis and robustness of the EMR methodology and, on the other hand, illustrate the practical relevance of the perturbative expansion used for deriving the parameterizations.
Parameterizations aim to reduce the complexity of high-dimensional dynamical systems. Here, a theory-based and a data-driven approach for the parameterization of coupled systems are compared, showing that both yield the same stochastic multilevel structure. The results provide very strong support to the use of empirical methods in model reduction and clarify the practical relevance of the proposed theoretical framework.
2020
Chekroun, Mickaël D., Ilan Koren, and Honghu Liu. 2020. “Efficient reduction for diagnosing Hopf bifurcation in delay differential systems: Applications to cloud-rain models.” Chaos: An Interdisciplinary Journal of Nonlinear Science 30: 053130 . Publisher's Version Abstract

By means of Galerkin-Koornwinder (GK) approximations, an efficient reduction approach to the Stuart-Landau (SL) normal form and center manifold is presented for a broad class of nonlinear systems of delay differential equations (DDEs) that covers the cases of discrete as well as distributed delays. The focus is on the Hopf bifurcation as the consequence of the critical equilibrium's destabilization resulting from an eigenpair crossing the imaginary axis. The nature of the resulting Hopf bifurcation (super- or subcritical) is then characterized by the inspection of a Lyapunov coefficient easy to determine based on the model's coefficients and delay parameter.  We believe that our approach, which does not rely too much on functional analysis considerations but more on analytic calculations, is suitable  to concrete situations arising in physics applications.

Thus, using this GK approach to the Lyapunov coefficient and SL normal form, the occurrence of Hopf bifurcations in the cloud-rain delay models of Koren and Feingold (KF) on one hand, and Koren, Tziperman and Feingold (KTF), on the other, are analyzed. Noteworthy is the existence for the KF model of large regions of the parameter space for which subcritical and supercritical Hopf bifurcations coexist. These regions are determined in particular by the intensity of the KF model's nonlinear effects. ``Islands'' of supercritical Hopf bifurcations are shown to exist within a subcritical Hopf bifurcation ``sea;'' these islands being bordered by double-Hopf bifurcations occurring when the linearized dynamics at the critical equilibrium exhibit two pairs of purely imaginary eigenvalues. 

Chekroun, Mickaël D., A. Tantet, Henk A. Dijkstra, and J. David Neelin. 2020. “Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part I: Theory.” Journal of Statistical Physics 179: 1366–1402. Publisher's Version Abstract

A theory of Ruelle–Pollicott (RP) resonances for stochastic differential systems is presented. These resonances are defined as the eigenvalues of the generator (Kolmogorov operator) of a given stochastic system. By relying on the theory of Markov semigroups, decomposition formulas of correlation functions and power spectral densities (PSDs) in terms of RP resonances are then derived. These formulas describe, for a broad class of stochastic differential equations (SDEs), how the RP resonances characterize the decay of correlations as well as the signal’s oscillatory components manifested by peaks in the PSD. It is then shown that a notion reduced RP resonances can be rigorously defined, as soon as the dynamics is partially observed within a reduced state space V. These reduced resonances are obtained from the spectral elements of reduced Markov operators acting on functions of the state space V, and can be estimated from series. They inform us about the spectral elements of some coarse-grained version of the SDE generator. When the time-lag at which the transitions are collected from partial observations in V, is either sufficiently small or large, it is shown that the reduced RP resonances approximate the (weak) RP resonances of the generator of the conditional expectation in V, i.e. the optimal reduced system in V obtained by averaging out the contribution of the unobserved variables. The approach is illustrated on a stochastic slow-fast system for which it is shown that the reduced RP resonances allow for a good reconstruction of the correlation functions and PSDs, even when the time-scale separation is weak. The companions articles, Part II and Part III, deal with further practical aspects of the theory presented in this contribution. One important byproduct consists of the diagnosis usefulness of stochastic dynamics that RP resonances provide. This is illustrated in the case of a stochastic Hopf bifurcation in Part II. There, it is shown that such a bifurcation has a clear manifestation in terms of a geometric organization of the RP resonances along discrete parabolas in the left half plane. Such geometric features formed by (reduced) RP resonances are extractable from time series and allow thus for providing an unambiguous “signature” of nonlinear oscillations embedded within a stochastic background. By relying then on the theory of reduced RP resonances presented in this contribution, Part III addresses the question of detection and characterization of such oscillations in a high-dimensional stochastic system, namely the Cane–Zebiak model of El Niño-Southern Oscillation subject to noise modeling fast atmospheric fluctuations.

Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2020. “Variational approach to closure of nonlinear dynamical systems: Autonomous case.” Journal of Statistical Physics 179: 1073–1160. Publisher's Version Abstract

A general, variational approach to derive low-order reduced systems for nonlinear systems subject to an autonomous forcing, is introduced. The approach is based on the concept of optimal parameterizing manifold (PM) that substitutes the more classical notion of slow manifold or invariant manifold when breakdown of slaving occurs. An optimal PM provides the manifold that describes the average motion of the neglected scales as a function of the resolved scales and allows, in principle, for determining the best vector field of the reduced state space that describes e.g. the dynamics' slow motion. The underlying optimal parameterizations are approximated by dynamically-based formulas derived analytically from the original equations. These formulas are contingent upon the determination of only a few (scalar) parameters obtained from minimization of cost functionals, depending on training dataset collected from direct numerical simulation. In practice, a training period of length comparable to a characteristic recurrence or decorrelation time of the dynamics, is sufficient for the efficient derivation of optimized parameterizations. Applications to the closure of low-order models of Atmospheric Primitive Equations and Rayleigh-Bénard convection are then discussed. The approach is finally illustrated --- in the context of the Kuramoto-Sivashinsky turbulence --- as providing efficient closures without slaving for a cutoff scale kc placed within the inertial range and the reduced state space is just spanned by the unstable modes, without inclusion of any stable modes whatsoever. The underlying optimal PMs obtained by our variational approach are far from slaving and allow for remedying the excessive backscatter transfer of energy to the low modes encountered by classical invariant manifold approximations in their standard forms when the latter are used at this cutoff wavelength.

Tantet, Alexis, Mickaël D. Chekroun, J. David Neelin, and Henk A. Dijkstra. 2020. “Ruelle–Pollicott Resonances of Stochastic Systems in Reduced State Space. Part III: Application to the Cane–Zebiak Model of the El Niño–Southern Oscillation.” Journal of Statistical Physics 179: 1449–1474. Publisher's Version Abstract

The response of a low-frequency mode of climate variability, El Niño–Southern Oscillation, to stochastic forcing is studied in a high-dimensional model of intermediate complexity, the fully-coupled Cane–Zebiak model (Zebiak and Cane 1987), from the spectral analysis of Markov operators governing the decay of correlations and resonances in the power spectrum. Noise-induced oscillations excited before a supercritical Hopf bifurcation are examined by means of complex resonances, the reduced Ruelle–Pollicott (RP) resonances, via a numerical application of the reduction approach of the first part of this contribution (Chekroun et al. 2019) to model simulations. The oscillations manifest themselves as peaks in the power spectrum which are associated with RP resonances organized along parabolas, as the bifurcation is neared. These resonances and the associated eigenvectors are furthermore well described by the small-noise expansion formulas obtained by Gaspard (2002) and made explicit in the second part of this contribution (Tantet et al. 2019). Beyond the bifurcation, the spectral gap between the imaginary axis and the real part of the leading resonances quantifies the diffusion of phase of the noise-induced oscillations and can be computed from the linearization of the model and from the diffusion matrix of the noise. In this model, the phase diffusion coefficient thus gives a measure of the predictability of oscillatory events representing ENSO. ENSO events being known to be locked to the seasonal cycle, these results should be extended to the non-autonomous case. More generally, the reduction approach theorized in Chekroun et al. (2019), complemented by our understanding of the spectral properties of reference systems such as the stochastic Hopf bifurcation, provides a promising methodology for the analysis of low-frequency variability in high-dimensional stochastic systems.

2018
Pierini, Stefano, Mickaël D. Chekroun, and Michael Ghil. 2018. “The onset of chaos in nonautonomous dissipative dynamical systems: a low-order ocean-model case study.” Nonlinear Processes in Geophysics 25: 671-692. Publisher's Version Abstract

A four-dimensional nonlinear spectral ocean model is used to study the transition to chaos induced by periodic forcing in systems that are nonchaotic in the autonomous limit. The analysis relies on the construction of the system’s pullback attractors (PBAs) through ensemble simulations, based on a large number of initial states in the remote past. A preliminary analysis of the autonomous system is carried out by investigating its bifurcation diagram, as well as by calculating a metric that measures the mean distance between two initially nearby trajectories, along with the system’s entropy. We find that nonchaotic attractors can still exhibit sensitive dependence on initial data over some time interval; this apparent paradox is resolved by noting that the dependence only concerns the phase of the periodic trajectories, and that it disappears once the latter have converged onto the attractor. The periodically forced system, analyzed by the same methods, yields periodic or chaotic PBAs depending on the periodic forcing’s amplitude ε. A new diagnostic method – based on the cross-correlation between two initially nearby trajectories – is proposed to characterize the transition between the two types of behavior. Transition to chaos is found to occur abruptly at a critical value εc and begins with the intermittent emergence of periodic oscillations with distinct phases. The same diagnostic method is finally shown to be a useful tool for autonomous and aperiodically forced systems as well.

Chekroun, Mickaël D., Michael Ghil, and J. David Neelin. 2018. “Pullback attractor crisis in a delay differential ENSO model.” Advances in Nonlinear Geosciences, A. Tsonis, 1-33. Springer. Publisher's version Abstract

We study the pullback attractor (PBA) of a seasonally forced delay differential model for the El Ni\~no--Southern Oscillation (ENSO); the model has two delays, associated with a positive and a negative feedback. The control parameter is the intensity of the positive feedback and the PBA undergoes a crisis that consists of a chaos-to-chaos transition. Since  the PBA is dominated by chaotic behavior, we refer to it as a strange PBA. Both chaotic regimes correspond to an overlapping of resonances but the two differ by the properties of this overlapping. The crisis manifests itself by a brutal change not only in the size but also in the shape of the PBA. The change is associated with the sudden disappearance of the most extreme warm (El Ni\~no) and cold (La Ni\~na) events, as one crosses the critical parameter value from below.  The analysis reveals that regions of the strange PBA that survive the crisis are those populated by the most probable states of the system. These regions are those that exhibit robust foldings with respect to perturbations.  The effect of noise on this phase-and-paramater space behavior is then discussed. It is shown that the chaos-to-chaos crisis may or may not survive the addition of small noise to the evolution equation, depending on how the noise enters the latter.

 

 

2017
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2017. “The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories.” Computers & Fluids 151: 3-22. Publisher's Version Abstract

The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast inertia-gravity oscillations have long been considered an impediment to initialization of weather forecasts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized. It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby number is crossed, in contradistinction with fast oscillations emerging according to an exponential smallness scenario such as reported in previous studies, including some others by Lorenz. The consequences of this dynamical transition on the closure problem based on slow variables is also discussed. In that respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This framework allows for a unification of previous concepts such as the slow manifold or other concepts of “fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through detailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the emergence of fast and energetic oscillations.

 

2016
Pierini, S., M. Ghil, and M. Chekroun. 2016. “Exploring the pullback attractors of a low-order quasigeostrophic ocean model: the deterministic case.” Journal of Climate 29 (11): 4185-4202. Publisher's Version Abstract

A low-order quasigeostrophic double-gyre ocean model is subjected to an aperiodic forcing that mimics time dependence dominated by interdecadal variability. This model is used as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The study relies on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), that is, of the time-dependent invariant sets attracting all trajectories initialized in the remote past. The existence of a global PBA is rigorously demonstrated for this weakly dissipative nonlinear model. Ensemble simulations are carried out and the convergence to PBAs is assessed by computing the probability density function (PDF) of localization of the trajectories. A sensitivity analysis with respect to forcing amplitude shows that the PBAs experience large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while less dramatic changes occur in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is then analyzed. Two types of basins of attraction coexist for certain parameter ranges; they contain chaotic and nonchaotic trajectories, respectively. The statistics of the former does not depend on the initial states whereas the trajectories in the latter converge to small portions of the global PBA. This complex scenario requires separate PDFs for chaotic and nonchaotic trajectories. General implications for climate predictability are finally discussed.

2014
Chekroun, M. D., J. D. Neelin, D. Kondrashov, J. C. McWilliams, and M. Ghil. 2014. “Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonance.” Proceeding of the National Academy of Sciences 111 (5): 1684—1690. Publisher's Version Abstract

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.

 

2013
Chekroun, M. D., and J. Roux. 2013. “Homeomorphisms group of normed vector spaces : The conjugacy problem and the Koopman operator.” Discrete and Continuous Dynamical Systems (DCDS-A) 33 (9): 3957—3950. Publisher's Version Abstract

This article is concerned with conjugacy problems arising in the homeomorphisms group, Hom(F), of unbounded subsets F of normed vector spaces E. Given two homeomorphisms f and g in Hom(F), it is shown how the existence of a conjugacy may be related to the existence of a common generalized eigenfunction of the associated Koopman operators. This common eigenfunction serves to build a topology on Hom(F), where the conjugacy is obtained as limit of a sequence generated by the conjugacy operator, when this limit exists. The main conjugacy theorem is presented in a class of generalized Lipeomorphisms.

Pages