Modes, Mechanisms of Variability

Detection and attribution studies have played a major role in shaping contemporary climate science and have provided key motivations supporting global climate policy negotiations. Their goal is to associate unambiguously observed patterns of climate change with anthropogenic and natural forcings acting as drivers through the so-called optimal fingerprinting method. We show here how response theory for nonequilibrium systems provides the physical and dynamical foundations behind optimal fingerprinting for the climate change detection and attribution problem, including the notion of causality used for attribution purposes. We clearly frame assumptions, strengths, and potential pitfalls of the method. Additionally, we clarify the mathematical framework behind the degenerate fingerprinting method that leads to early warning indicators for tipping points. Finally, we extend the optimal fingerprinting method to the regime of nonlinear response. Our findings indicate that optimal fingerprinting for detection and attribution can be applied to virtually any stochastic system undergoing time-dependent forcing.
Chekroun, Mickaël D., Tom Dror, Orit Altaratz, and Ilan Koren. Submitted. “Equations discovery of organized cloud fields: Stochastic generator and dynamical insights”. arXiv's link Abstract

The emergence of organized multiscale patterns resulting from convection is ubiquitous, observed throughout different cloud types. The reproduction of such patterns by general circulation models remains a challenge due to the complex nature of clouds, characterized by processes interacting over a wide range of spatio-temporal scales. The new advances in data-driven modeling techniques have raised a lot of promises to discover dynamical equations from partial observations of complex systems.
This study presents such a discovery from high-resolution satellite datasets of continental cloud fields. The model is made of stochastic differential equations able to simulate with high fidelity the spatio-temporal coherence and variability of the cloud patterns such as the characteristic lifetime of individual clouds or global organizational features governed by convective inertia gravity waves. This feat is achieved through the model's lagged effects associated with convection recirculation times, and hidden variables parameterizing the unobserved processes and variables.


Conceptual delay models have played a key role in the analysis and understanding of El Niño-Southern Oscillation (ENSO) variability. Based on such delay models, we propose in this work a novel scenario for the fabric of ENSO variability resulting from the subtle interplay between stochastic disturbances and nonlinear invariant sets emerging from bifurcations of the unperturbed dynamics.

To identify these invariant sets we adopt an approach combining Galerkin-Koornwinder (GK) approximations of delay differential equations and center-unstable manifold reduction techniques. In that respect, GK approximation formulas are reviewed and synthesized, as well as analytic approximation formulas of center-unstable manifolds. The reduced systems derived thereof enable us to conduct a thorough analysis of the bifurcations arising in a standard delay model of ENSO. We identify thereby a saddle-node bifurcation of periodic orbits co-existing with a subcritical Hopf bifurcation, and a homoclinic bifurcation for this model. We show furthermore that the computation of unstable periodic orbits (UPOs) unfolding through these bifurcations is considerably simplified from the reduced systems.

These dynamical insights enable us in turn to design a stochastic model whose solutions—as the delay parameter drifts slowly through its critical values—produce a wealth of temporal patterns resembling ENSO events and exhibiting also decadal variability. Our analysis dissects the origin of this variability and shows how it is tied to certain transition paths between invariant sets of the unperturbed dynamics (for ENSO’s interannual variability) or simply due to the presence of UPOs close to the homoclinic orbit (for decadal variability). In short, this study points out the role of solution paths evolving through tipping “points” beyond equilibria, as possible mechanisms organizing the variability of certain climate phenomena.

Lucarini, Valerio, and Mickaël D. Chekroun. 2023. “Theoretical tools for understanding the climate crisis from Hasselmann’s programme and beyond.” Nature Review Physics 5: 744-765 . Publisher's link Abstract
Klaus Hasselmann’s revolutionary intuition in climate science was to use the stochasticity associated with fast weather processes to probe the slow dynamics of the climate system. Doing so led to fundamentally new ways to study the response of climate models to perturbations, and to perform detection and attribution for climate change signals. Hasselmann’s programme has been extremely influential in climate science and beyond. In this Perspective, we first summarize the main aspects of such a programme using modern concepts and tools of statistical physics and applied mathematics. We then provide an overview of some promising scientific perspectives that might clarify the science behind the climate crisis and that stem from Hasselmann’s ideas. We show how to perform rigorous and data-driven model reduction by constructing parameterizations in systems that do not necessarily feature a timescale separation between unresolved and resolved processes. We outline a general theoretical framework for explaining the relationship between climate variability and climate change, and for performing climate change projections. This framework enables us seamlessly to explain some key general aspects of climatic tipping points. Finally, we show that response theory provides a solid framework supporting optimal fingerprinting methods for detection and attribution.
Chekroun, Mickaël D., Ilan Koren, Honghu Liu, and Huan Liu. 2022. “Generic generation of noise-driven chaos in stochastic time delay systems: Bridging the gap with high-end simulations.” Science Advances 8 (46): eabq7137. Publisher's Version Abstract

Nonlinear time delay systems produce inherently delay-induced periodic oscillations, which are, however, too idealistic compared to observations. We exhibit a unified stochastic framework to systematically rectify such oscillations into oscillatory patterns with enriched temporal variabilities through generic, nonlinear responses to stochastic perturbations. Two paradigms of noise-driven chaos in high dimension are identified, fundamentally different from chaos triggered by parameter-space noise. Noteworthy is a low-dimensional stretch-and-fold mechanism, leading to stochastic strange attractors exhibiting horseshoe-like structures mirroring turbulent transport of passive tracers. The other is high-dimensional , with noise acting along the critical eigendirection and transmitted to deeperstable modes through nonlinearity, leading to stochastic attractors exhibiting swarm-like behaviors with power-law and scale break properties. The theory is applied to cloud delay models to parameterize missing physics such as intermittent rain and Lagrangian turbulent effects. The stochastically rectified model reproduces with fidelity complex temporal variabilities of open-cell oscillations exhibited by high-end cloud simulations.

Chekroun, Mickaël D., Henk A. Dijkstra, Taylan Şengül, and Shouhong Wang. 2022. “Transitions of zonal flows in a two- layer quasi-geostrophic ocean model.” Nonlinear Dynamics . Publisher's version Abstract
We consider a 2-layer quasi-geostrophic ocean model where the upper layer is forced by a steady Kolmogorov wind stress in a periodic channel domain, which allows to mathematically study the nonlinear development of the resulting flow. The model supports a steady parallel shear flow as a response to the wind stress. As the maximal velocity of the shear flow (equivalently the maximal amplitude of the wind forcing) exceeds a critical threshold, the zonal jet destabilizes due to baroclinic instability and we numerically demonstrate that a first transition occurs. We obtain reduced equations of the system using the formalism of dynamic transition theory and establish two scenarios which completely describe this first transition. The generic scenario is that two modes become critical and a Hopf bifurcation occurs as a result. Under an appropriate set of parameters describing midlatitude oceanic flows, we show that this first transition is continuous: a supercritical Hopf bifurcation occurs and a stable time periodic solution bifurcates. We also investigate the case of double Hopf bifurcations which occur when four modes of the linear stability problem simultaneously destabilize the zonal jet. In this case we prove that, in the relevant parameter regime, the flow exhibits a continuous transition accompanied by a bifurcated attractor homeomorphic to S^3. The topological structure of this attractor is analyzed in detail and is shown to depend on the system parameters. In particular, this attractor contains
(stable or unstable) time-periodic solutions and a quasi-periodic solution.
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2021. “Stochastic rectification of fast oscillations on slow manifold closures.” Proc. Natl. Acad. Sci. 118 (48): E2113650118. Publisher's Version Abstract
The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.
Dror, Tom, Mickaël D. Chekroun, Ilan Koren, and Orit Altaratz. 2021. “Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens.” Atmospheric Chemistry and Physics 21: 12261–12272. Publisher's Version Abstract
A subset of continental shallow convective cumulus (Cu) cloud fields has been shown to have distinct spatial properties and to form mostly over forests and vegetated areas, thus referred to as “green Cu” (Dror et al., 2020). Green Cu fields are known to form organized mesoscale patterns, yet the underlying mechanisms, as well as the time variability of these patterns, are still lacking understanding. Here, we characterize the organization of green Cu in space and time, by using data-driven organization metrics and by applying an empirical orthogonal function (EOF) analysis to a high-resolution GOES-16 dataset. We extract, quantify, and reveal modes of organization present in a green Cu field, during the course of a day. The EOF decomposition is able to show the field's key organization features such as cloud streets, and it also delineates the less visible ones, as the propagation of gravity waves (GWs) and the emergence of a highly organized grid on a spatial scale of hundreds of kilometers, over a time period that scales with the field's lifetime. Using cloud fields that were reconstructed from different subgroups of modes, we quantify the cloud street's wavelength and aspect ratio, as well as the GW-dominant period.
Tantet, Alexis, Mickaël D. Chekroun, Henk A. Dijkstra, and J. David Neelin. 2020. “Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part II: Stochastic Hopf Bifurcation.” Journal of Statistical Physics 179: 1403–1448. Publisher's Version Abstract

The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation functions and power spectra of stochastic systems via decomposition formulas in terms of RP resonances; see Part I of this contribution (Chekroun et al. in Theory J Stat., 2020). Stochastic analysis techniques relying on the theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction method is presented in Part I Chekroun et al. (2020). This framework is here applied to study a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear oscillators perturbed by noise, depending on their stability. In light of the Hörmander theorem, it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons, i.e., the leaves of the stable manifold of the limit cycle generalizing the notion of phase, is essential to understand the effect of the noise and the phenomenon of phase diffusion. In addition, it is shown that the RP spectrum has a spectral gap, even at the bifurcation point, and that correlations decay exponentially fast. Explicit small-noise expansions of the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point, based on the knowledge of the linearized deterministic dynamics and the characteristics of the noise. These formulas allow one to understand how the interaction of the noise with the deterministic dynamics affect the decay of correlations. Numerical results complement the study of the RP spectrum at the bifurcation point, revealing useful scaling laws. The analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing a complementary approach to the more geometric random dynamical system (RDS) approach. This approach is not limited to low-dimensional systems and the reduction method presented in Chekroun et al. (2020) is applied to a stochastic model relevant to climate dynamics in the third part of this contribution (Tantet et al. in J Stat Phys., 2019).

Chekroun, Mickaël D., A. Tantet, Henk A. Dijkstra, and J. David Neelin. 2020. “Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part I: Theory.” Journal of Statistical Physics 179: 1366–1402. Publisher's Version Abstract

A theory of Ruelle–Pollicott (RP) resonances for stochastic differential systems is presented. These resonances are defined as the eigenvalues of the generator (Kolmogorov operator) of a given stochastic system. By relying on the theory of Markov semigroups, decomposition formulas of correlation functions and power spectral densities (PSDs) in terms of RP resonances are then derived. These formulas describe, for a broad class of stochastic differential equations (SDEs), how the RP resonances characterize the decay of correlations as well as the signal’s oscillatory components manifested by peaks in the PSD. It is then shown that a notion reduced RP resonances can be rigorously defined, as soon as the dynamics is partially observed within a reduced state space V. These reduced resonances are obtained from the spectral elements of reduced Markov operators acting on functions of the state space V, and can be estimated from series. They inform us about the spectral elements of some coarse-grained version of the SDE generator. When the time-lag at which the transitions are collected from partial observations in V, is either sufficiently small or large, it is shown that the reduced RP resonances approximate the (weak) RP resonances of the generator of the conditional expectation in V, i.e. the optimal reduced system in V obtained by averaging out the contribution of the unobserved variables. The approach is illustrated on a stochastic slow-fast system for which it is shown that the reduced RP resonances allow for a good reconstruction of the correlation functions and PSDs, even when the time-scale separation is weak. The companions articles, Part II and Part III, deal with further practical aspects of the theory presented in this contribution. One important byproduct consists of the diagnosis usefulness of stochastic dynamics that RP resonances provide. This is illustrated in the case of a stochastic Hopf bifurcation in Part II. There, it is shown that such a bifurcation has a clear manifestation in terms of a geometric organization of the RP resonances along discrete parabolas in the left half plane. Such geometric features formed by (reduced) RP resonances are extractable from time series and allow thus for providing an unambiguous “signature” of nonlinear oscillations embedded within a stochastic background. By relying then on the theory of reduced RP resonances presented in this contribution, Part III addresses the question of detection and characterization of such oscillations in a high-dimensional stochastic system, namely the Cane–Zebiak model of El Niño-Southern Oscillation subject to noise modeling fast atmospheric fluctuations.

Tantet, Alexis, Mickaël D. Chekroun, J. David Neelin, and Henk A. Dijkstra. 2020. “Ruelle–Pollicott Resonances of Stochastic Systems in Reduced State Space. Part III: Application to the Cane–Zebiak Model of the El Niño–Southern Oscillation.” Journal of Statistical Physics 179: 1449–1474. Publisher's Version Abstract

The response of a low-frequency mode of climate variability, El Niño–Southern Oscillation, to stochastic forcing is studied in a high-dimensional model of intermediate complexity, the fully-coupled Cane–Zebiak model (Zebiak and Cane 1987), from the spectral analysis of Markov operators governing the decay of correlations and resonances in the power spectrum. Noise-induced oscillations excited before a supercritical Hopf bifurcation are examined by means of complex resonances, the reduced Ruelle–Pollicott (RP) resonances, via a numerical application of the reduction approach of the first part of this contribution (Chekroun et al. 2019) to model simulations. The oscillations manifest themselves as peaks in the power spectrum which are associated with RP resonances organized along parabolas, as the bifurcation is neared. These resonances and the associated eigenvectors are furthermore well described by the small-noise expansion formulas obtained by Gaspard (2002) and made explicit in the second part of this contribution (Tantet et al. 2019). Beyond the bifurcation, the spectral gap between the imaginary axis and the real part of the leading resonances quantifies the diffusion of phase of the noise-induced oscillations and can be computed from the linearization of the model and from the diffusion matrix of the noise. In this model, the phase diffusion coefficient thus gives a measure of the predictability of oscillatory events representing ENSO. ENSO events being known to be locked to the seasonal cycle, these results should be extended to the non-autonomous case. More generally, the reduction approach theorized in Chekroun et al. (2019), complemented by our understanding of the spectral properties of reference systems such as the stochastic Hopf bifurcation, provides a promising methodology for the analysis of low-frequency variability in high-dimensional stochastic systems.

Kondrashov, Dmitri, Mickaël D. Chekroun, and Michael Ghil. 2018. “Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent.” Dynamics and Statistics of the Climate System 3 (1): 1. Publisher's Version Abstract

Decline in the Arctic sea ice extent (SIE) is an area of active scientific research with profound socio-economic implications. Of particular interest are reliable methods for SIE forecasting on subseasonal time scales, in particular from early summer into fall, when sea ice coverage in the Arctic reaches its minimum. Here, we apply the recent data-adaptive harmonic (DAH) technique of Chekroun and Kondrashov, (2017), Chaos, 27 for the description, modeling and prediction of the Multisensor Analyzed Sea Ice Extent (MASIE, 2006–2016) data set. The DAH decomposition of MASIE identifies narrowband, spatio-temporal data-adaptive modes over four key Arctic regions. The time evolution of the DAH coefficients of these modes can be modelled and predicted by using a set of coupled Stuart–Landau stochastic differential equations that capture the modes’ frequencies and amplitude modulation in time. Retrospective forecasts show that our resulting multilayer Stuart–Landau model (MSLM) is quite skilful in predicting September SIE compared to year-to-year persistence; moreover, the DAH–MSLM approach provided accurate real-time prediction that was highly competitive for the 2016–2017 Sea Ice Outlook.

Kondrashov, Dmitri, Mickaël D. Chekroun, and Pavel Berloff. 2018. “Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres.” Fluids 3 (1): 21. Publisher's Version Abstract

The multiscale variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper demonstrates how the data-adaptive harmonic (DAH) decomposition and inverse stochastic modeling techniques introduced in (Chekroun and Kondrashov, (2017), Chaos, 27), allow for reproducing with high fidelity the main statistical properties of multiscale variability in a coarse-grained eddy-resolving ocean flow. This fully-data-driven approach relies on extraction of frequency-ranked time-dependent coefficients describing the evolution of spatio-temporal DAH modes (DAHMs) in the oceanic flow data. In turn, the time series of these coefficients are efficiently modeled by a family of low-order stochastic differential equations (SDEs) stacked per frequency, involving a fixed set of predictor functions and a small number of model coefficients. These SDEs take the form of stochastic oscillators, identified as multilayer Stuart–Landau models (MSLMs), and their use is justified by relying on the theory of Ruelle–Pollicott resonances. The good modeling skills shown by the resulting DAH-MSLM emulators demonstrates the feasibility of using a network of stochastic oscillators for the modeling of geophysical turbulence. In a certain sense, the original quasiperiodic Landau view of turbulence, with the amendment of the inclusion of stochasticity, may be well suited to describe turbulence.

Decadal DAH mode


Kondrashov, Dmitri, Mickaël D. Chekroun, Xiaojun Yuan, and Michael Ghil. 2018. “Data-adaptive harmonic decomposition and stochastic modeling of Arctic sea ice.” Advances in Nonlinear Geosciences, A. Tsonis, 179-205. Springer. Publisher's Version Abstract

We present and apply a novel method of describing and modeling complex multivariate datasets in the geosciences and elsewhere. Data-adaptive harmonic (DAH) decomposition identifies narrow-banded, spatio-temporal modes (DAHMs) whose frequencies are not necessarily integer multiples of each other. The evolution in time of the DAH coefficients (DAHCs) of these modes can be modeled using a set of coupled Stuart-Landau stochastic differential equations that capture the modes’ frequencies and amplitude modulation in time and space. This methodology is applied first to a challenging synthetic dataset and then to Arctic sea ice concentration (SIC) data from the US National Snow and Ice Data Center (NSIDC). The 36-year (1979–2014) dataset is parsimoniously and accurately described by our DAHMs. Preliminary results indicate that simulations using our multilayer Stuart-Landau model (MSLM) of SICs are stable for much longer time intervals, beyond the end of the twenty-first century, and exhibit interdecadal variability consistent with past historical records. Preliminary results indicate that this MSLM is quite skillful in predicting September sea ice extent.

Chekroun, Mickaël D., Michael Ghil, and J. David Neelin. 2018. “Pullback attractor crisis in a delay differential ENSO model.” Advances in Nonlinear Geosciences, A. Tsonis, 1-33. Springer. Publisher's version Abstract

We study the pullback attractor (PBA) of a seasonally forced delay differential model for the El Ni\~no--Southern Oscillation (ENSO); the model has two delays, associated with a positive and a negative feedback. The control parameter is the intensity of the positive feedback and the PBA undergoes a crisis that consists of a chaos-to-chaos transition. Since  the PBA is dominated by chaotic behavior, we refer to it as a strange PBA. Both chaotic regimes correspond to an overlapping of resonances but the two differ by the properties of this overlapping. The crisis manifests itself by a brutal change not only in the size but also in the shape of the PBA. The change is associated with the sudden disappearance of the most extreme warm (El Ni\~no) and cold (La Ni\~na) events, as one crosses the critical parameter value from below.  The analysis reveals that regions of the strange PBA that survive the crisis are those populated by the most probable states of the system. These regions are those that exhibit robust foldings with respect to perturbations.  The effect of noise on this phase-and-paramater space behavior is then discussed. It is shown that the chaos-to-chaos crisis may or may not survive the addition of small noise to the evolution equation, depending on how the noise enters the latter.



Chekroun, Mickaël D., and Dmitri Kondrashov. 2017. “Data-adaptive harmonic spectra and multilayer Stuart-Landau models.” Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (9): 093110. Publisher's version Abstract

Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with  
periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. 

The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum.  The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum.

The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators.

Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.

Boers, N., M. D. Chekroun, H. Liu, D. Kondrashov, D.-D. Rousseau, A. Svensson, M. Bigler, and M. Ghil. 2017. “Inverse stochastic-dynamic models for high-resolution Greenland ice-core records.” Earth System Dynamics 8: 1171–1190. Publisher's Version Abstract

Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP) and we focus on the time interval 59 ka–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data; (ii) cubic drift terms; (iii) nonlinear coupling terms between the δ18O and dust time series; and (iv) non-Markovian contributions that represent short-term memory effects.

Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2017. “The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories.” Computers & Fluids 151: 3-22. Publisher's Version Abstract

The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast inertia-gravity oscillations have long been considered an impediment to initialization of weather forecasts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized. It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby number is crossed, in contradistinction with fast oscillations emerging according to an exponential smallness scenario such as reported in previous studies, including some others by Lorenz. The consequences of this dynamical transition on the closure problem based on slow variables is also discussed. In that respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This framework allows for a unification of previous concepts such as the slow manifold or other concepts of “fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through detailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the emergence of fast and energetic oscillations.


Chen, C., M. Cane, N. Henderson, D. Lee, D. Chapman, D. Kondrashov, and M. D. Chekroun. 2016. “Diversity, nonlinearity, seasonality and memory effect in ENSO simulation and prediction using empirical model reduction.” Journal of Climate 29 (5): 1809–1830. Publisher's Version Abstract

A suite of empirical model experiments under the empirical model reduction framework are conducted to advance the understanding of ENSO diversity, nonlinearity, seasonality, and the memory effect in the simulation and prediction of tropical Pacific sea surface temperature (SST) anomalies. The model training and evaluation are carried out using 4000-yr preindustrial control simulation data from the coupled model GFDL CM2.1. The results show that multivariate models with tropical Pacific subsurface information and multilevel models with SST history information both improve the prediction skill dramatically. These two types of models represent the ENSO memory effect based on either the recharge oscillator or the time-delayed oscillator viewpoint. Multilevel SST models are a bit more efficient, requiring fewer model coefficients. Nonlinearity is found necessary to reproduce the ENSO diversity feature for extreme events. The nonlinear models reconstruct the skewed probability density function of SST anomalies and improve the prediction of the skewed amplitude, though the role of nonlinearity may be slightly overestimated given the strong nonlinear ENSO in GFDL CM2.1. The models with periodic terms reproduce the SST seasonal phase locking but do not improve the prediction appreciably. The models with multiple ingredients capture several ENSO characteristics simultaneously and exhibit overall better prediction skill for more diverse target patterns. In particular, they alleviate the spring/autumn prediction barrier and reduce the tendency for predicted values to lag the target month value.

Chekroun, M. D., J. D. Neelin, D. Kondrashov, J. C. McWilliams, and M. Ghil. 2014. “Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonance.” Proceeding of the National Academy of Sciences 111 (5): 1684—1690. Publisher's Version Abstract

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.