Miscellaneous Topics

2013
Chekroun, M. D., and J. Roux. 2013. “Homeomorphisms group of normed vector spaces : The conjugacy problem and the Koopman operator.” Discrete and Continuous Dynamical Systems (DCDS-A) 33 (9): 3957—3950. Publisher's Version Abstract

This article is concerned with conjugacy problems arising in the homeomorphisms group, Hom(F), of unbounded subsets F of normed vector spaces E. Given two homeomorphisms f and g in Hom(F), it is shown how the existence of a conjugacy may be related to the existence of a common generalized eigenfunction of the associated Koopman operators. This common eigenfunction serves to build a topology on Hom(F), where the conjugacy is obtained as limit of a sequence generated by the conjugacy operator, when this limit exists. The main conjugacy theorem is presented in a class of generalized Lipeomorphisms.

2006
Chekroun, M. D., M. Ghil, J. Roux, and F. Varadi. 2006. “Averaging of time-periodic systems without a small parameter.” Discrete and Continuous Dynamical Systems (DCDS-A) 14 (4): 753-782. Publisher's Version Abstract

In this article, we present a new approach to averaging in non-Hamiltonian systems with periodic forcing. The results here do not depend on the existence of a small parameter. In fact, we show that our averaging method fits into an appropriate nonlinear equivalence problem, and that this problem can be solved formally by using the Lie transform framework to linearize it. According to this approach, we derive formal coordinate transformations associated with both first-order and higher-order averaging, which result in more manageable formulae than the classical ones.
  Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation.
  Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.