Multiscale Modeling

Chekroun, Mickaël D., Tom Dror, Orit Altaratz, and Ilan Koren. Submitted. “Equations discovery of organized cloud fields: Stochastic generator and dynamical insights”. arXiv's link Abstract

The emergence of organized multiscale patterns resulting from convection is ubiquitous, observed throughout different cloud types. The reproduction of such patterns by general circulation models remains a challenge due to the complex nature of clouds, characterized by processes interacting over a wide range of spatio-temporal scales. The new advances in data-driven modeling techniques have raised a lot of promises to discover dynamical equations from partial observations of complex systems.
This study presents such a discovery from high-resolution satellite datasets of continental cloud fields. The model is made of stochastic differential equations able to simulate with high fidelity the spatio-temporal coherence and variability of the cloud patterns such as the characteristic lifetime of individual clouds or global organizational features governed by convective inertia gravity waves. This feat is achieved through the model's lagged effects associated with convection recirculation times, and hidden variables parameterizing the unobserved processes and variables.

Chekroun, Mickaël D., H. Liu, K. Srinivasan, and James C. McWilliams. 2024. “The High-Frequency and Rare Events Barriers to Neural Closures of Atmospheric Dynamics.” Journal of Physics: Complexity 5: 025004. Publisher's version Abstract
Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.
Srinivasan, Kaushik, Mickaël D. Chekroun, and James C. McWilliams. 2024. “Turbulence closure with small, local neural networks: Forced two-dimensional and β-plane flows.” Journal of Advances in Modeling Earth Systems 16 (4): e2023MS003795. Publisher's version Abstract

We parameterize sub-grid scale (SGS) fluxes in sinusoidally forced two-dimensional turbulence on the β-plane at high Reynolds numbers (Re ∼25,000) using simple 2-layer convolutional neural networks (CNN) having only O(1000) parameters, two orders of magnitude smaller than recent studies employing deeper CNNs with 8–10 layers; we obtain stable, accurate, and long-term online or a posteriori solutions at 16× downscaling factors. Our methodology significantly improves training efficiency and speed of online large eddy simulations runs, while offering insights into the physics of closure in such turbulent flows. Our approach benefits from extensive hyperparameter searching in learning rate and weight decay coefficient space, as well as the use of cyclical learning rate annealing, which leads to more robust and accurate online solutions compared to fixed learning rates. Our CNNs use either the coarse velocity or the vorticity and strain fields as inputs, and output the two components of the deviatoric stress tensor, Sd. We minimize a loss between the SGS vorticity flux divergence (computed from the high-resolution solver) and that obtained from the CNN-modeled Sd, without requiring energy or enstrophy preserving constraints. The success of shallow CNNs in accurately parameterizing this class of turbulent flows implies that the SGS stresses have a weak non-local dependence on coarse fields; it also aligns with our physical conception that small-scales are locally controlled by larger scales such as vortices and their strained filaments. Furthermore, 2-layer CNN-parameterizations are more likely to be interpretable.

Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2023. “Optimal parameterizing manifolds for anticipating tipping points and higher-order critical transitions.” Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (9): 093126. Publisher's Version Abstract
A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of “slaving” occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary backward–forward systems built from the model’s equations and lead to analytic formulas for parameterizations. In this modus operandi, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place.
Lucarini, Valerio, and Mickaël D. Chekroun. 2023. “Theoretical tools for understanding the climate crisis from Hasselmann’s programme and beyond.” Nature Review Physics 5: 744-765 . Publisher's link Abstract
Klaus Hasselmann’s revolutionary intuition in climate science was to use the stochasticity associated with fast weather processes to probe the slow dynamics of the climate system. Doing so led to fundamentally new ways to study the response of climate models to perturbations, and to perform detection and attribution for climate change signals. Hasselmann’s programme has been extremely influential in climate science and beyond. In this Perspective, we first summarize the main aspects of such a programme using modern concepts and tools of statistical physics and applied mathematics. We then provide an overview of some promising scientific perspectives that might clarify the science behind the climate crisis and that stem from Hasselmann’s ideas. We show how to perform rigorous and data-driven model reduction by constructing parameterizations in systems that do not necessarily feature a timescale separation between unresolved and resolved processes. We outline a general theoretical framework for explaining the relationship between climate variability and climate change, and for performing climate change projections. This framework enables us seamlessly to explain some key general aspects of climatic tipping points. Finally, we show that response theory provides a solid framework supporting optimal fingerprinting methods for detection and attribution.
Chekroun, Mickaël D., Honghu Liu, James C. McWilliams, and Shouhong Wang. 2023. “Transitions in Stochastic Non-equilibrium Systems: Efficient Reduction and Analysis.” Journal of Differential Equations 346 (10): 145-204. Publisher's version Abstract

A central challenge in physics is to describe non-equilibrium systems driven by randomness, such as a randomly growing interface, or fluids subject to random fluctuations that account e.g. for local stresses and heat fluxes in the fluid which are not related to the velocity and temperature gradients. For deterministic systems with infinitely many degrees of freedom, normal form and center manifold theory have shown a prodigious efficiency to often completely characterize how the onset of linear instability translates into the emergence of nonlinear patterns, associated with genuine physical regimes. However, in presence of random fluctuations, the underlying reduction principle to the center manifold is seriously challenged due to large excursions caused by the noise, and the approach needs to be revisited.

In this study, we present an alternative framework to cope with these difficulties exploiting the approximation theory of stochastic invariant manifolds, on one hand, and energy estimates measuring the defect of parameterization of the high-modes, on the other. To operate for fluid problems subject to stochastic stirring forces, these error estimates are derived under assumptions regarding dissipation effects brought by the high-modes in order to suitably counterbalance the loss of regularity due to the nonlinear terms. As a result, the approach enables us to analyze, from reduced equations of the stochastic fluid problem, the occurrence in large probability of a stochastic analogue to the pitchfork bifurcation, as long as the noise’s intensity and the eigenvalue’s magnitude of the mildly unstable mode scale accordingly.

In the case of SPDEs forced by a multiplicative noise in the orthogonal subspace of e.g. its mildly unstable mode, our parameterization formulas show that the noise gets transmitted to this mode via non-Markovian coefficients, and that the reduced equation is only stochastically driven by the latter.  These coefficients depend explicitly on the noise path's history, and their memory content is self-consistently determined by the intensity of the random force and its interaction through the SPDE's nonlinear terms. Applications to a stochastic Rayleigh-B\'enard problem  are detailed, for which conditions for a stochastic pitchfork bifurcation (in large probability) to occur, are clarified.




Chekroun, Mickaël D., Ilan Koren, Honghu Liu, and Huan Liu. 2022. “Generic generation of noise-driven chaos in stochastic time delay systems: Bridging the gap with high-end simulations.” Science Advances 8 (46): eabq7137. Publisher's Version Abstract

Nonlinear time delay systems produce inherently delay-induced periodic oscillations, which are, however, too idealistic compared to observations. We exhibit a unified stochastic framework to systematically rectify such oscillations into oscillatory patterns with enriched temporal variabilities through generic, nonlinear responses to stochastic perturbations. Two paradigms of noise-driven chaos in high dimension are identified, fundamentally different from chaos triggered by parameter-space noise. Noteworthy is a low-dimensional stretch-and-fold mechanism, leading to stochastic strange attractors exhibiting horseshoe-like structures mirroring turbulent transport of passive tracers. The other is high-dimensional , with noise acting along the critical eigendirection and transmitted to deeperstable modes through nonlinearity, leading to stochastic attractors exhibiting swarm-like behaviors with power-law and scale break properties. The theory is applied to cloud delay models to parameterize missing physics such as intermittent rain and Lagrangian turbulent effects. The stochastically rectified model reproduces with fidelity complex temporal variabilities of open-cell oscillations exhibited by high-end cloud simulations.

Chekroun, Mickaël D., Henk A. Dijkstra, Taylan Şengül, and Shouhong Wang. 2022. “Transitions of zonal flows in a two- layer quasi-geostrophic ocean model.” Nonlinear Dynamics . Publisher's version Abstract
We consider a 2-layer quasi-geostrophic ocean model where the upper layer is forced by a steady Kolmogorov wind stress in a periodic channel domain, which allows to mathematically study the nonlinear development of the resulting flow. The model supports a steady parallel shear flow as a response to the wind stress. As the maximal velocity of the shear flow (equivalently the maximal amplitude of the wind forcing) exceeds a critical threshold, the zonal jet destabilizes due to baroclinic instability and we numerically demonstrate that a first transition occurs. We obtain reduced equations of the system using the formalism of dynamic transition theory and establish two scenarios which completely describe this first transition. The generic scenario is that two modes become critical and a Hopf bifurcation occurs as a result. Under an appropriate set of parameters describing midlatitude oceanic flows, we show that this first transition is continuous: a supercritical Hopf bifurcation occurs and a stable time periodic solution bifurcates. We also investigate the case of double Hopf bifurcations which occur when four modes of the linear stability problem simultaneously destabilize the zonal jet. In this case we prove that, in the relevant parameter regime, the flow exhibits a continuous transition accompanied by a bifurcated attractor homeomorphic to S^3. The topological structure of this attractor is analyzed in detail and is shown to depend on the system parameters. In particular, this attractor contains
(stable or unstable) time-periodic solutions and a quasi-periodic solution.
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2021. “Stochastic rectification of fast oscillations on slow manifold closures.” Proc. Natl. Acad. Sci. 118 (48): E2113650118. Publisher's Version Abstract
The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.
Santos Gutiérrez, Manuel, Valerio Lucarini, Mickaël D. Chekroun, and Michael Ghil. 2021. “Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator.” Chaos 31: 053116. Publisher's Version Abstract
Providing efficient and accurate parameterizations for model reduction is a key goal in many areas of science and technology. Here, we present a strong link between data-driven and theoretical approaches to achieving this goal. Formal perturbation expansions of the Koopman operator allow us to derive general stochastic parameterizations of weakly coupled dynamical systems. Such parameterizations yield a set of stochastic integrodifferential equations with explicit noise and memory kernel formulas to describe the effects of unresolved variables. We show that the perturbation expansions involved need not be truncated when the coupling is additive. The unwieldy integrodifferential equations can be recast as a simpler multilevel Markovian model, and we establish an intuitive connection with a generalized Langevin equation. This connection helps setting up a parallelism between the top-down, equation-based methodology herein and the well-established empirical model reduction (EMR) methodology that has been shown to provide efficient dynamical closures to partially observed systems. Hence, our findings, on the one hand, support the physical basis and robustness of the EMR methodology and, on the other hand, illustrate the practical relevance of the perturbative expansion used for deriving the parameterizations.
Parameterizations aim to reduce the complexity of high-dimensional dynamical systems. Here, a theory-based and a data-driven approach for the parameterization of coupled systems are compared, showing that both yield the same stochastic multilevel structure. The results provide very strong support to the use of empirical methods in model reduction and clarify the practical relevance of the proposed theoretical framework.
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2020. “Variational approach to closure of nonlinear dynamical systems: Autonomous case.” Journal of Statistical Physics 179: 1073–1160. Publisher's Version Abstract

A general, variational approach to derive low-order reduced systems for nonlinear systems subject to an autonomous forcing, is introduced. The approach is based on the concept of optimal parameterizing manifold (PM) that substitutes the more classical notion of slow manifold or invariant manifold when breakdown of slaving occurs. An optimal PM provides the manifold that describes the average motion of the neglected scales as a function of the resolved scales and allows, in principle, for determining the best vector field of the reduced state space that describes e.g. the dynamics' slow motion. The underlying optimal parameterizations are approximated by dynamically-based formulas derived analytically from the original equations. These formulas are contingent upon the determination of only a few (scalar) parameters obtained from minimization of cost functionals, depending on training dataset collected from direct numerical simulation. In practice, a training period of length comparable to a characteristic recurrence or decorrelation time of the dynamics, is sufficient for the efficient derivation of optimized parameterizations. Applications to the closure of low-order models of Atmospheric Primitive Equations and Rayleigh-Bénard convection are then discussed. The approach is finally illustrated --- in the context of the Kuramoto-Sivashinsky turbulence --- as providing efficient closures without slaving for a cutoff scale kc placed within the inertial range and the reduced state space is just spanned by the unstable modes, without inclusion of any stable modes whatsoever. The underlying optimal PMs obtained by our variational approach are far from slaving and allow for remedying the excessive backscatter transfer of energy to the low modes encountered by classical invariant manifold approximations in their standard forms when the latter are used at this cutoff wavelength.

Kondrashov, Dmitri, Mickaël D. Chekroun, and Pavel Berloff. 2018. “Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres.” Fluids 3 (1): 21. Publisher's Version Abstract

The multiscale variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper demonstrates how the data-adaptive harmonic (DAH) decomposition and inverse stochastic modeling techniques introduced in (Chekroun and Kondrashov, (2017), Chaos, 27), allow for reproducing with high fidelity the main statistical properties of multiscale variability in a coarse-grained eddy-resolving ocean flow. This fully-data-driven approach relies on extraction of frequency-ranked time-dependent coefficients describing the evolution of spatio-temporal DAH modes (DAHMs) in the oceanic flow data. In turn, the time series of these coefficients are efficiently modeled by a family of low-order stochastic differential equations (SDEs) stacked per frequency, involving a fixed set of predictor functions and a small number of model coefficients. These SDEs take the form of stochastic oscillators, identified as multilayer Stuart–Landau models (MSLMs), and their use is justified by relying on the theory of Ruelle–Pollicott resonances. The good modeling skills shown by the resulting DAH-MSLM emulators demonstrates the feasibility of using a network of stochastic oscillators for the modeling of geophysical turbulence. In a certain sense, the original quasiperiodic Landau view of turbulence, with the amendment of the inclusion of stochasticity, may be well suited to describe turbulence.

Decadal DAH mode


Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. 2017. “The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories.” Computers & Fluids 151: 3-22. Publisher's Version Abstract

The problem of emergence of fast gravity-wave oscillations in rotating, stratified flow is reconsidered. Fast inertia-gravity oscillations have long been considered an impediment to initialization of weather forecasts, and the concept of a “slow manifold” evolution, with no fast oscillations, has been hypothesized. It is shown on a reduced Primitive Equation model introduced by Lorenz in 1980 that fast oscillations are absent over a finite interval in Rossby number but they can develop brutally once a critical Rossby number is crossed, in contradistinction with fast oscillations emerging according to an exponential smallness scenario such as reported in previous studies, including some others by Lorenz. The consequences of this dynamical transition on the closure problem based on slow variables is also discussed. In that respect, a novel variational perspective on the closure problem exploiting manifolds is introduced. This framework allows for a unification of previous concepts such as the slow manifold or other concepts of “fuzzy” manifold. It allows furthermore for a rigorous identification of an optimal limiting object for the averaging of fast oscillations, namely the optimal parameterizing manifold (PM). It is shown through detailed numerical computations and rigorous error estimates that the manifold underlying the nonlinear Balance Equations provides a very good approximation of this optimal PM even somewhat beyond the emergence of fast and energetic oscillations.


Chekroun, Mickaël D., and Honghu Liu. 2015. “Finite-Horizon Parameterizing Manifolds, and Applications to Suboptimal Control of Nonlinear Parabolic PDEs.” Acta Applicandae Mathematicae 135 (1): 81–144. Publisher's Version Abstract

This article proposes a new approach based on finite-horizon parameterizing manifolds (PMs) for the design of low-dimensional suboptimal controllers to optimal control problems of nonlinear partial differential equations (PDEs) of parabolic type. Given a finite horizon [0,T] and a low-mode truncation of the PDE, a PM provides an approximate parameterization of the uncontrolled high modes by the controlled low ones so that the unexplained high-mode energy is reduced, in an L2-sense, when this parameterization is applied. Analytic formulas of such PMs are derived by application of the method of pullback approximation of the high-modes. These formulas allow for an effective derivation of reduced ODE systems, aimed to model the evolution of the low-mode truncation of the controlled state variable, where the high-mode part is approximated by the PM function applied to the low modes. A priori error estimates between the resulting PM-based low-dimensional suboptimal controller u_R* and the optimal controller u* are derived. These estimates demonstrate that the closeness of u_R* to u*? is mainly conditioned on two factors: (i) the parameterization defect of a given PM, associated respectively with u_R* and u*; and (ii) the energy kept in the high modes of the PDE solution either driven by u_R* or u* itself. The practical performances of such PM-based suboptimal controllers are numerically assessed for various optimal control problems associated with a Burgers-type equation. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results. The practical performances of such PM-based suboptimal controllers are numerically assessed for optimal control problems associated with a Burgers-type equation; the locally as well as globally distributed cases being both considered. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results.

Kondrashov, Dmitri, Mickaël D. Chekroun, and Michael Ghil. 2015. “Data-driven non-Markovian closure models.” Physica D: Nonlinear Phenomena 297: 33 - 55. Publisher's Version Abstract
Abstract This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori–Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of \MSMs\ can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the \MZ\ formalism. A simple correlation-based stopping criterion for an EMR–MSM model is derived to assess how well it approximates the \GLE\ solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given \MSM\ to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of \MSM\ applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR–MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an \MSM\ is shown to successfully reproduce the statistics of a partially observed, generalized Lotka–Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model’s parameter space and the existence of multiple attractor basins with fractal boundaries. The positivity constraint on the solutions’ components replaces here the quadratic-energy–preserving constraint of fluid-flow problems and it successfully prevents blow-up.
Chekroun, Mickaël D., Honghu Liu, and Shouhong Wang. 2015. Approximation of Stochastic Invariant Manifolds : Stochastic Manifolds for Nonlinear SPDEs I. New York: Springer Briefs in Mathematics, Springer, pp. 127. Publisher's Version Abstract

This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations  take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.

Chekroun, Mickaël D., Honghu Liu, and Shouhong Wang. 2015. Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations : Stochastic Manifolds for Nonlinear SPDEs II. New York: Springer Briefs in Mathematics, Springer, pp. 129. Publisher's Version Abstract

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

Chekroun, M. D., M. Ghil, J. Roux, and F. Varadi. 2006. “Averaging of time-periodic systems without a small parameter.” Discrete and Continuous Dynamical Systems (DCDS-A) 14 (4): 753-782. Publisher's Version Abstract

In this article, we present a new approach to averaging in non-Hamiltonian systems with periodic forcing. The results here do not depend on the existence of a small parameter. In fact, we show that our averaging method fits into an appropriate nonlinear equivalence problem, and that this problem can be solved formally by using the Lie transform framework to linearize it. According to this approach, we derive formal coordinate transformations associated with both first-order and higher-order averaging, which result in more manageable formulae than the classical ones.
  Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation.
  Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.