Equations discovery of organized cloud fields: Stochastic generator and dynamical insights


Chekroun, Mickaël D., Tom Dror, Orit Altaratz, and Ilan Koren. Submitted. “Equations discovery of organized cloud fields: Stochastic generator and dynamical insights”.


The emergence of organized multiscale patterns resulting from convection is ubiquitous, observed throughout different cloud types. The reproduction of such patterns by general circulation models remains a challenge due to the complex nature of clouds, characterized by processes interacting over a wide range of spatio-temporal scales. The new advances in data-driven modeling techniques have raised a lot of promises to discover dynamical equations from partial observations of complex systems.
This study presents such a discovery from high-resolution satellite datasets of continental cloud fields. The model is made of stochastic differential equations able to simulate with high fidelity the spatio-temporal coherence and variability of the cloud patterns such as the characteristic lifetime of individual clouds or global organizational features governed by convective inertia gravity waves. This feat is achieved through the model's lagged effects associated with convection recirculation times, and hidden variables parameterizing the unobserved processes and variables.

arXiv's link

Last updated on 04/24/2023