Enriched numerical scheme for singularly perturbed barotropic quasi-geostrophic equations

Citation:

Chekroun, Mickaël D., Youngjoon Hong, and Roger Temam. 2020. “Enriched numerical scheme for singularly perturbed barotropic quasi-geostrophic equations.” Journal of Computational Physics 416: 109493.

Abstract:

Singularly perturbed barotropic Quasi-Geostrophic (QG) models are considered. A boundary layer analysis is presented and the convergence of solutions is studied. Based on the rigorous analysis of the underlying boundary layer problems, an enriched spectral method (ESM) is proposed to solve the QG models. It consists of adding to the Legendre basis functions, analytically-determined boundary layer elements called “correctors," with the aim of capturing most of the complex behavior occurring near the boundary with such elements. Through detailed numerical experiments, it is shown that high-accuracy is often reached by the ESM scheme with only a relatively low number N of basis functions, when compared to approximations based on spectral elements which typically display non-physical oscillations throughout the physical domain, for such values of N. The key to success relies on our analytically-based boundary layer elements, which, due to their highly nonlinear nature, are able to capture most of the steep gradients occurring in the problem’s solution, near the boundary. Our numerical results include multi-dimensional as well as time-dependent problems.

Publisher's Version

Last updated on 05/21/2020