Effects of wave streaming and wave variations on nearshore wave-driven circulation

Citation:

Wang, Peng, James C. McWilliams, Yusuke Uchiyama, Mickaël D. Chekroun, and Daling Li Yi. 2020. “Effects of wave streaming and wave variations on nearshore wave-driven circulation.” J. Phys. Oceanograhy 50 (10): 3025-3041.

Abstract:

Wave streaming is a near-bottom mean current induced by the bottom drag on surface gravity waves. Wave variations include the variations in wave heights, periods, and directions. Here we use numerical simulations to study the effects of wave streaming and wave variations on the circulation that is driven by incident surface waves. Wave streaming induces an inner-shelf Lagrangian overturning circulation, which links the inner shelf with the surf zone. Wave variations cause along shore-variable wave breaking that produces surf eddies; however, such eddies can be suppressed by wave streaming. Moreover, with passive tracers we show that wave streaming and wave variations together enhance the cross- shelf material transport.

Publisher's Version

See also: Earth Science
Last updated on 12/23/2023