Detecting and Attributing Change in Climate and Complex Systems: Foundations, Kolmogorov Modes, and Nonlinear Fingerprints

Abstract:

 
 
Detection and attribution studies have played a major role in shaping contemporary climate science and have provided key motivations supporting global climate policy negotiations. Their goal is to associate unambiguously observed patterns of climate change with anthropogenic and natural forcings acting as drivers through the so-called optimal fingerprinting method. We show here how response theory for nonequilibrium systems provides the physical and dynamical foundations behind optimal fingerprinting for the climate change detection and attribution problem, including the notion of causality used for attribution purposes. We clearly frame assumptions, strengths, and potential pitfalls of the method. Additionally, we clarify the mathematical framework behind the degenerate fingerprinting method that leads to early warning indicators for tipping points. Finally, we extend the optimal fingerprinting method to the regime of nonlinear response. Our findings indicate that optimal fingerprinting for detection and attribution can be applied to virtually any stochastic system undergoing time-dependent forcing.

arXiv version

Last updated on 12/23/2023