# Publications

Conceptual delay models have played a key role in the analysis and understanding of El Niño-Southern Oscillation (ENSO) variability. Based on such delay models, we propose in this work a novel scenario for the fabric of ENSO variability resulting from the subtle interplay between stochastic disturbances and nonlinear invariant sets emerging from bifurcations of the unperturbed dynamics.

To identify these invariant sets we adopt an approach combining Galerkin-Koornwinder (GK) approximations of delay differential equations and center-unstable manifold reduction techniques. In that respect, GK approximation formulas are reviewed and synthesized, as well as analytic approximation formulas of center-unstable manifolds. The reduced systems derived thereof enable us to conduct a thorough analysis of the bifurcations arising in a standard delay model of ENSO. We identify thereby a saddle-node bifurcation of periodic orbits co-existing with a subcritical Hopf bifurcation, and a homoclinic bifurcation for this model. We show furthermore that the computation of unstable periodic orbits (UPOs) unfolding through these bifurcations is considerably simplified from the reduced systems.

These dynamical insights enable us in turn to design a stochastic model whose solutions—as the delay parameter drifts slowly through its critical values—produce a wealth of temporal patterns resembling ENSO events and exhibiting also decadal variability. Our analysis dissects the origin of this variability and shows how it is tied to certain transition paths between invariant sets of the unperturbed dynamics (for ENSO’s interannual variability) or simply due to the presence of UPOs close to the homoclinic orbit (for decadal variability). In short, this study points out the role of solution paths evolving through tipping “points” beyond equilibria, as possible mechanisms organizing the variability of certain climate phenomena.

Detection and attribution studies have played a major role in shaping contemporary climate science and have provided key motivations supporting global climate policy negotiations. Their goal is to associate unambiguously observed patterns of climate change with anthropogenic and natural forcings acting as drivers through the so-called optimal fingerprinting method. We show here how response theory for nonequilibrium systems provides the physical and dynamical foundations behind optimal fingerprinting for the climate change detection and attribution problem, including the notion of causality used for attribution purposes. We clearly frame assumptions, strengths, and potential pitfalls of the method. Additionally, we clarify the mathematical framework behind the degenerate fingerprinting method that leads to early warning indicators for tipping points. Finally, we extend the optimal fingerprinting method to the regime of nonlinear response. Our findings indicate that optimal fingerprinting for detection and attribution can be applied to virtually any stochastic system undergoing time-dependent forcing.

The emergence of organised multiscale patterns resulting from convection is ubiquitous, observed throughout different cloud types around the world. The nonlinear dynamics understanding of such cloud patterns by cloud-resolving models such as large eddy simulation models remains a grand challenge. In this work, we present an alternative approach based on conceptual stochastic delay differential models. We show that with the suitable stochastic parameterization accounting for the missing physics, the delay model's response to stochastic perturbations can indeed reproduces with fidelity the rich variability of cloud oscillations such as extracted from Lagrangian analysis of high-resolution satellite images.

Our approach employs Lagrangian attractors obtained by tracking oscillatory features from satellite images that we confront to ensemble and pullback attractors from stochastic delay models experiencing a stochastic Hopf bifurcation. Our analysis reveals that while the closed-cell dynamics corresponds to that of a random steady state, the open-cell dynamics is much richer, as associated to that of a random limit cycle, and dominated by different types of phase-locked oscillations that unfold in the course of the day.

The emergence of organized multiscale patterns resulting from convection is ubiquitous, observed throughout different cloud types. The reproduction of such patterns by general circulation models remains a challenge due to the complex nature of clouds, characterized by processes interacting over a wide range of spatio-temporal scales. The new advances in data-driven modeling techniques have raised a lot of promises to discover dynamical equations from partial observations of complex systems.

This study presents such a discovery from high-resolution satellite datasets of continental cloud fields. The model is made of stochastic differential equations able to simulate with high fidelity the spatio-temporal coherence and variability of the cloud patterns such as the characteristic lifetime of individual clouds or global organizational features governed by convective inertia gravity waves. This feat is achieved through the model's lagged effects associated with convection recirculation times, and hidden variables parameterizing the unobserved processes and variables.

We parameterize sub-grid scale (SGS) fluxes in sinusoidally forced two-dimensional turbulence on the beta-plane at high Reynolds numbers (Re~25000) using simple 2-layer Convolutional Neural Networks (CNN) having only O(1000)-parameters, two orders of magnitude smaller than recent studies employing deeper CNNs with 8-10 layers; we obtain stable, accurate, and long-term online or a posteriori solutions at 16X downscaling factors. Our methodology significantly improves training efficiency and speed of online Large Eddy Simulations (LES) runs, while offering insights into the physics of closure in such turbulent flows. Our approach benefits from extensive hyperparameter searching in learning rate and weight decay coefficient space, as well as the use of cyclical learning rate annealing, which leads to more robust and accurate online solutions compared to fixed learning rates. Our CNNs use either the coarse velocity or the vorticity and strain fields as inputs, and output the two components of the deviatoric stress tensor. We minimize a loss between the SGS vorticity flux divergence (computed from the high-resolution solver) and that obtained from the CNN-modeled deviatoric stress tensor, without requiring energy or enstrophy preserving constraints. The success of shallow CNNs in accurately parameterizing this class of turbulent flows implies that the SGS stresses have a weak non-local dependence on coarse fields; it also aligns with our physical conception that small-scales are locally controlled by larger scales such as vortices and their strained filaments. Furthermore, 2-layer CNN-parameterizations are more likely to be interpretable and generalizable because of their intrinsic low dimensionality.

*modus operandi*, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place.

A central challenge in physics is to describe non-equilibrium systems driven by randomness, such as a randomly growing interface, or fluids subject to random fluctuations that account e.g. for local stresses and heat fluxes in the fluid which are not related to the velocity and temperature gradients. For deterministic systems with infinitely many degrees of freedom, normal form and center manifold theory have shown a prodigious efficiency to often completely characterize how the onset of linear instability translates into the emergence of nonlinear patterns, associated with genuine physical regimes. However, in presence of random fluctuations, the underlying reduction principle to the center manifold is seriously challenged due to large excursions caused by the noise, and the approach needs to be revisited.

In this study, we present an alternative framework to cope with these difficulties exploiting the approximation theory of stochastic invariant manifolds, on one hand, and energy estimates measuring the defect of parameterization of the high-modes, on the other. To operate for fluid problems subject to stochastic stirring forces, these error estimates are derived under assumptions regarding dissipation effects brought by the high-modes in order to suitably counterbalance the loss of regularity due to the nonlinear terms. As a result, the approach enables us to analyze, from reduced equations of the stochastic fluid problem, the occurrence in large probability of a stochastic analogue to the pitchfork bifurcation, as long as the noise’s intensity and the eigenvalue’s magnitude of the mildly unstable mode scale accordingly.

In the case of SPDEs forced by a multiplicative noise in the orthogonal subspace of e.g. its mildly unstable mode, our parameterization formulas show that the noise gets transmitted to this mode via non-Markovian coefficients, and that the reduced equation is only stochastically driven by the latter. These coefficients depend explicitly on the noise path's history, and their memory content is self-consistently determined by the intensity of the random force and its interaction through the SPDE's nonlinear terms. Applications to a stochastic Rayleigh-B\'enard problem are detailed, for which conditions for a stochastic pitchfork bifurcation (in large probability) to occur, are clarified.

Nonlinear time delay systems produce inherently delay-induced periodic oscillations, which are, however, too idealistic compared to observations. We exhibit a unified stochastic framework to systematically rectify such oscillations into oscillatory patterns with enriched temporal variabilities through generic, nonlinear responses to stochastic perturbations. Two paradigms of noise-driven chaos in high dimension are identified, fundamentally different from chaos triggered by parameter-space noise. Noteworthy is a low-dimensional stretch-and-fold mechanism, leading to stochastic strange attractors exhibiting horseshoe-like structures mirroring turbulent transport of passive tracers. The other is high-dimensional , with noise acting along the critical eigendirection and transmitted to “deeper” stable modes through nonlinearity, leading to stochastic attractors exhibiting swarm-like behaviors with power-law and scale break properties. The theory is applied to cloud delay models to parameterize missing physics such as intermittent rain and Lagrangian turbulent effects. The stochastically rectified model reproduces with fidelity complex temporal variabilities of open-cell oscillations exhibited by high-end cloud simulations.

*greenCu*. Using machine-learning supervised classification, we identify greenCu fields over three regions, from the tropics to mid- and higher-latitudes, and establish a novel satellite-based data set called

*greenCuDb*, consisting of 1° × 1° sized, high-resolution MODIS images. Using greenCuDb in conjunction with ERA5 reanalysis data, we create greenCu composites for different regions and reveal that greenCu are driven by similar large-scale meteorological conditions, regardless of their geographical locations throughout the world's continents. These conditions include distinct profiles of temperature, humidity and large-scale vertical velocity. The boundary layer is anomalously warm and moderately humid, and is accompanied by a strong large-scale subsidence in the free troposphere.

(stable or unstable) time-periodic solutions and a quasi-periodic solution.

Noise modifies the behavior of chaotic systems in both quantitative and qualitative ways. To study these modifications, the present work compares the topological structure of the deterministic Lorenz (1963) attractor with its stochastically perturbed version. The deterministic attractor is well known to be “strange” but it is frozen in time. When driven by multiplicative noise, the Lorenz model’s random attractor (LORA) evolves in time. Algebraic topology sheds light on the most striking effects involved in such an evolution. In order to examine the topological structure of the snapshots that approximate LORA, we use branched manifold analysis through homologies—a technique originally introduced to characterize the topological structure of deterministically chaotic flows—which is being extended herein to nonlinear noise-driven systems. The analysis is performed for a fixed realization of the driving noise at different time instants in time. The results suggest that LORA’s evolution includes sharp transitions that appear as topological tipping points.

Wave streaming is a near-bottom mean current induced by the bottom drag on surface gravity waves. Wave variations include the variations in wave heights, periods, and directions. Here we use numerical simulations to study the effects of wave streaming and wave variations on the circulation that is driven by incident surface waves. Wave streaming induces an inner-shelf Lagrangian overturning circulation, which links the inner shelf with the surf zone. Wave variations cause along shore-variable wave breaking that produces surf eddies; however, such eddies can be suppressed by wave streaming. Moreover, with passive tracers we show that wave streaming and wave variations together enhance the cross- shelf material transport.

Optimal control of harvested population at the edge of extinction in an unprotected area, is considered. The underlying population dynamics is governed by a Kolmogorov-Petrovsky-Piskunov equation with a harvesting term and space-dependent coefficients while the control consists of transporting individuals from a natural reserve. The nonlinear optimal control problem is approximated by means of a Galerkin scheme. Convergence result about the optimal controlled solutions and error estimates between the corresponding optimal controls, are derived. For certain parameter regimes, nearly optimal solutions are calculated from a simple logistic ordinary differential equation (ODE) with a harvesting term, obtained as a Galerkin approximation of the original partial differential equation (PDE) model. A critical allowable fraction of the reserve's population is inferred from the reduced logistic ODE with a harvesting term. This estimate obtained from the reduced model allows us to distinguish sharply between survival and extinction for the full PDE itself, and thus to declare whether a control strategy leads to success or failure for the corresponding rescue operation while ensuring survival in the reserve's population. In dynamical terms, this result illustrates that although continuous dependence on the forcing may hold on finite-time intervals, a high sensitivity in the system's response may occur in the asymptotic time. We believe that this work, by its generality, establishes bridges interesting to explore between optimal control problems of ODEs with a harvesting term and their PDE counterpart.

By means of Galerkin-Koornwinder (GK) approximations, an efficient reduction approach to the Stuart-Landau (SL) normal form and center manifold is presented for a broad class of nonlinear systems of delay differential equations (DDEs) that covers the cases of discrete as well as distributed delays. The focus is on the Hopf bifurcation as the consequence of the critical equilibrium's destabilization resulting from an eigenpair crossing the imaginary axis. The nature of the resulting Hopf bifurcation (super- or subcritical) is then characterized by the inspection of a Lyapunov coefficient easy to determine based on the model's coefficients and delay parameter. We believe that our approach, which does not rely too much on functional analysis considerations but more on analytic calculations, is suitable to concrete situations arising in physics applications.

Thus, using this GK approach to the Lyapunov coefficient and SL normal form, the occurrence of Hopf bifurcations in the cloud-rain delay models of Koren and Feingold (KF) on one hand, and Koren, Tziperman and Feingold (KTF), on the other, are analyzed. Noteworthy is the existence for the KF model of large regions of the parameter space for which subcritical and supercritical Hopf bifurcations coexist. These regions are determined in particular by the intensity of the KF model's nonlinear effects. ``Islands'' of supercritical Hopf bifurcations are shown to exist within a subcritical Hopf bifurcation ``sea;'' these islands being bordered by double-Hopf bifurcations occurring when the linearized dynamics at the critical equilibrium exhibit two pairs of purely imaginary eigenvalues.