Research Interests

 

Turbulence Closure with Small, Neural Networks:

 

Stochastic Strange Attractor (Chekroun et al. (2011), Physica D, 240):

Vimeo movie: https://vimeo.com/240039610

 

Cloud Physics and Stochastic Strange Attractors (Chekroun et al. (2022), Science Advances, 8 (46)):

    

Vimeo movie: https://vimeo.com/773696444

 

<embed>
Copy and paste this code to your website.
Copy and paste this code to your website.

Recent Publications

We introduce a generalization of linear response theory for mixed jump-diffusion models, combining both Gaussian and Lévy noise forcings that interact with the nonlinear dynamics. This class of models covers a broad range of stochastic chaos and complexity for which the jump-diffusion processes are a powerful tool to parameterize the missing physics or effects of the unresolved scales onto the resolved ones.
By generalizing concepts such as Kolmogorov operators and Green's functions to this context, we derive fluctuation-dissipation relationships for such models. The system response can then be interpreted in terms of contributions from the eigenmodes of the Kolmogorov operator (Kolmogorov modes) decomposing the time-lagged correlation functions of the unperturbed dynamics. The underlying formulas offer a fresh look on the intimate relationships between the system's natural variability and its forced variability.
We apply our theory to a paradigmatic El Niño-Southern Oscillation (ENSO) subject to state-dependent jumps and additive white noise parameterizing intermittent and nonlinear feedback mechanisms, key factors in the actual ENSO phenomenon. Such stochastic parameterizations are shown to produce stochastic chaos with an enriched time-variability. The Kolmogorov modes encoding the latter are then computed, and our Green's functions formulas are shown to achieve a remarkable accuracy to predict the system's response to perturbations.
This work enriches Hasselmann's program by providing a more comprehensive approach to climate modeling and prediction, allowing for accounting the effects of both continuous and discontinuous stochastic forcing. Our results have implications for understanding climate sensitivity, detection and attributing climate change, and assessing the risk of climate tipping points.
Santos Gutiérrez, Manuel, and Mickaël D. Chekroun. Submitted. “The Optimal Growth Mode in the Relaxation to Statistical Equilibrium.” arXiv preprint, arXiv:2407.02545. arXiv version Abstract
Systems far from equilibrium approach stability slowly due to "anti-mixing" characterized by regions of the phase-space that remain disconnected after prolonged action of the flow. We introduce the Optimal Growth Mode (OGM) to capture this slow initial relaxation. The OGM is calculated from Markov matrices approximating the action of the Fokker-Planck operator onto the phase space. It is obtained as the mode having the largest growth in energy before decay. Important nuances between the OGM and the more traditional slowest decaying mode are detailed in the case of the Lorenz 63 model. The implications for understanding how complex systems respond to external forces, are discussed.
Chekroun, Mickaël D., Honghu Liu, and James C. McWilliams. Submitted. “Non-Markovian Reduced Models to Unravel Transitions in Non-equilibrium Systems.” arXiv preprint, arXiv:2408.13428. arXiv version Abstract

This work proposes a general framework for analyzing noise-driven transitions in  spatially extended non-equilibrium systems and explains the emergence of coherent patterns beyond the instability onset. The framework relies on stochastic parameterization formulas to reduce the complexity of the original equations while preserving the essential dynamical effects of unresolved scales. The approach is flexible and operates for both Gaussian noise and non-Gaussian noise with jumps.

Our stochastic parameterization formulas offer two key advantages. First, they can approximate stochastic invariant manifolds when these manifolds exist. Second, even when such manifolds break down, our formulas can be adapted through a simple optimization of its constitutive parameters. This allows us to handle scenarios with weak time-scale separation where the system has undergone multiple transitions, resulting in large-amplitude solutions not captured by invariant manifolds or other time-scale separation methods.

The optimized stochastic parameterizations capture then how small-scale noise impacts larger scales through the system's nonlinear interactions. This effect is achieved by the very fabric of our parameterizations incorporating non-Markovian (memory-dependent) coefficients into the reduced equation. These coefficients account for the noise's past influence, not just its current value, using a finite memory length that is selected for optimal performance. The specific "memory" function, which determines how this past influence is weighted, depends on both the strength of the noise and how it interacts with the system's nonlinearities.

Remarkably, training our theory-guided reduced models on a single noise path effectively learns the optimal memory length for out-of-sample predictions. This approach retains indeed good accuracy in predicting noise-induced transitions, including rare events, when tested against a large ensemble of different noise paths. This success stems from our ``hybrid" approach, which combines analytical understanding with data-driven learning. This combination avoids a key limitation of purely data-driven methods: their struggle to generalize to unseen scenarios, also known as the "extrapolation problem."
 

 

Lucarini, Valerio, and Mickaël D. Chekroun. Submitted. “Detecting and Attributing Change in Climate and Complex Systems: Foundations, Kolmogorov Modes, and Nonlinear Fingerprints.” arXiv preprint, arXiv:2212.02628. arXiv version Abstract
 
 
Detection and attribution studies have played a major role in shaping contemporary climate science and have provided key motivations supporting global climate policy negotiations. Their goal is to associate unambiguously observed patterns of climate change with anthropogenic and natural forcings acting as drivers through the so-called optimal fingerprinting method. We show here how response theory for nonequilibrium systems provides the physical and dynamical foundations behind optimal fingerprinting for the climate change detection and attribution problem, including the notion of causality used for attribution purposes. We clearly frame assumptions, strengths, and potential pitfalls of the method. Additionally, we clarify the mathematical framework behind the degenerate fingerprinting method that leads to early warning indicators for tipping points. Finally, we extend the optimal fingerprinting method to the regime of nonlinear response. Our findings indicate that optimal fingerprinting for detection and attribution can be applied to virtually any stochastic system undergoing time-dependent forcing.
Koren, Ilan, Tom Dror, Orit Altaratz, and Mickaël D. Chekroun. 2024. “Cloud Versus Void Chord Length Distributions (LvL) as a Measure for Cloud Field Organization.” Geophysical Research Letters 51 (11): e2024GL108435. Publisher's Version Abstract
Cloud organization impacts the radiative effects and precipitation patterns of the cloud field. Deviating from randomness, clouds exhibit either clustering or a regular grid structure, characterized by the spacing between clouds and the cloud size distribution. The two measures are coupled but do not fully define each other. Here, we present the deviation from randomness of the cloud- and void-chord length distributions as a measure for both factors. We introduce the LvL representation and an associated 2D score that allow for unambiguously quantifying departure from well-defined baseline randomness in cloud spacing and sizes. This approach demonstrates sensitivity and robustness in classifying cloud field organization types. Its delicate sensitivity unravels the temporal evolution of a single cloud field, providing novel insights into the underlying governing processes.
Santos Gutiérrez, Manuel, Mickaël D. Chekroun, and Ilan Koren. 2024. “Gibbs states and Brownian models for haze and cloud droplets.” Science Advances 10 (46): eadq7518. Publisher's version Abstract
Cloud microphysics studies include how tiny cloud droplets grow and become rain. This is crucial for understanding cloud properties like size, life span, and impact on climate through radiative effects. Small weak-updraft clouds near the haze-to-cloud transition are especially difficult to measure and understand. They are abundant but hard to capture by satellites. Köhler’s theory explains initial droplet growth but struggles with large particle groups. Here, we present a stochastic, analytical framework building on Köhler’s theory to account for (monodisperse) aerosols and cloud droplet interaction through competitive growth in a limited water vapor field. These interactions are modeled by sink terms, while fluctuations in supersaturation affecting droplet growth are modeled by nonlinear white noise terms. Our results identify hysteresis mechanisms in the droplet activation and deactivation processes. Our approach allows for multimodal cloud’s droplet size distributions supported by laboratory experiments, offering a different perspective on haze-to-cloud transition and small cloud formation.
More