Enhancement of anammox by the excretion of diel vertical migrators

Citation:

Bianchi D, Babbin AR, Galbraith ED. Enhancement of anammox by the excretion of diel vertical migrators. Proceedings of the National Academy of Sciences [Internet]. 2014;111 (44) :15653–15658.
PDF1.23 MB

Abstract:

Measurements show that anaerobic ammonium oxidation with nitrite (anammox) is a major pathway of fixed nitrogen removal in the anoxic zones of the open ocean. Anammox requires a source of ammonium, which under anoxic conditions could be supplied by the breakdown of sinking organic matter via heterotrophic denitrification. However, at many locations where anammox is measured, denitrification rates are small or undetectable. Alternative sources of ammonium have been proposed to explain this paradox, for example through dissimilatory reduction of nitrate to ammonium and transport from anoxic sediments. However, the relevance of these sources in open-ocean anoxic zones is debated. Here, we bring to attention an additional source of ammonium, namely, the daytime excretion by zooplankton and micronekton migrating from the surface to anoxic waters. We use a synthesis of acoustic data to show that, where anoxic waters occur within the water column, most migrators spend the daytime within them. Although migrators export only a small fraction of primary production from the surface, they focus excretion within a confined depth range of anoxic water where particle input is small. Using a simple biogeochemical model, we suggest that, at those depths, the source of ammonium from organisms undergoing diel vertical migrations could exceed the release from particle remineralization, enhancing in situ anammox rates. The contribution of this previously overlooked process, and the numerous uncertainties surrounding it, call for further efforts to evaluate the role of animals in oxygen minimum zone biogeochemistry.

Publisher's Version

Last updated on 06/27/2017