Regional climate change

Understanding climate change on global and continental scales is important, but impacts are felt and decisions are made on smaller scales. A major focus of our group’s work is to understand climate change on the regional scales that are relevant to climate adaptation questions.
 

Our work in this area includes developing innovative methods for downscaling information from global climate models so that we can create fine-spatial-resolution projections of future climate. To date, we have completed downscaling studies over the greater Los Angeles area and California’s Sierra Nevada, assessing changes to key aspects of climate. In these projects, we have worked to ensure that our projections account for important local climate processes, achieving greater physical realism than if these processes were not included.

RELATED PUBLICATIONS

Christensen JH, Kanikicharla KK, Adlrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kayanga JK, et al. Climate phenomena and their relevance for future regional climate change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press ; 2013. Publisher's VersionAbstract
This chapter assesses the scientific literature on projected changes in major climate phenomena and more specifically their relevance for future change in regional climates, contingent on global mean temperatures continue to rise.
Conil S, Hall A. Local regimes of atmospheric variability: A case study of Southern California. Journal of Climate [Internet]. 2006;19 :4308–4325. Publisher's VersionAbstract
The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model was forced by reanalysis boundary conditions over the period 1995–2003. The region is approximately the same size as a typical grid box of the current generation of general circulation models used for global climate prediction and reanalysis product generation, and so can be thought of as a laboratory for the study of climate at spatial scales smaller than those resolved by global simulations and reanalysis products. It is found that the simulated circulation during the October–March wet season, when variability is most significant, can be understood through an objective classification technique in terms of three wind regimes. The composite surface wind patterns associated with these regimes exhibit significant spatial structure within the model domain, consistent with the complex topography of the region. These regimes also correspond nearly perfectly with the simulation’s highly structured patterns of variability in hydrology and temperature, and therefore are the main contributors to the local climate variability. The regimes are approximately equally likely to occur regardless of the phase of the classical large-scale modes of atmospheric variability prevailing in the Pacific–North American sector. The high degree of spatial structure of the local regimes and their tightly associated climate impacts, as well as their ambiguous relationship with the primary modes of large-scale variability, demonstrate that the local perspective offered by the high-resolution model is necessary to understand and predict the climate variations of the region.
Hughes M, Hall A, Fovell RG. Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dynamics [Internet]. 2007;29 :277–292. Publisher's VersionAbstract
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.
Hall A, Qu X, Neelin JD. Improving predictions of summer climate change in the United States. Geophysical Research Letters [Internet]. 2008;35 :L01702. Publisher's VersionAbstract
Across vast, agriculturally intensive regions of the United States, the spread in predictions of summer temperature and soil moisture under global warming is curiously elevated in current climate models. Some models show modest warming of 2–3C° and little drying or slight moistening by the 22nd century, while at the other extreme are simulations with warming as large as 7–8C° and 20–40% reductions in soil moisture. We show this region of large spread arises from differences in simulations of snow albedo feedback. During winter and early spring, models with strong snow albedo feedback exhibit large reductions in snowpack and hence water storage. This water deficit persists in summer soil moisture, with reduced evapotranspiration yielding warmer temperatures. Comparison of simulated feedback strength to observations of the feedback from the current climate's seasonal cycle suggests the inter‐model differences are excessive. At the same time, the multi‐model mean feedback strength agrees reasonably well with the observed value. We estimate that if the next generation of models were brought into line with observations of snow albedo feedback, the unusually wide divergence in simulations of summer warming and drying over the US would shrink by roughly one third to one half.
Boé J, Hall A, Qu X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience [Internet]. 2009;2 :341–343. Publisher's VersionAbstract
The Arctic climate is changing rapidly1. From 1979 to 2006, September sea-ice extent decreased by almost 25% or about 100,000 km2 per year (ref. 2). In September 2007, Arctic sea-ice extent reached its lowest level since satellite observations began3and in September 2008, sea-ice cover was still low. This development has raised concerns that the Arctic Ocean could be ice-free in late summer in only a few decades, with important economic and geopolitical implications. Unfortunately, most current climate models underestimate significantly the observed trend in Arctic sea-ice decline4, leading to doubts regarding their projections for the timing of ice-free conditions. Here we analyse the simulated trends in past sea-ice cover in 18 state-of-art-climate models and find a direct relationship between the simulated evolution of September sea-ice cover over the twenty-first century and the magnitude of past trends in sea-ice cover. Using this relationship together with observed trends, we project the evolution of September sea-ice cover over the twenty-first century. We find that under a scenario with medium future greenhouse-gas emissions, the Arctic Ocean will probably be ice-free in September before the end of the twenty-first century.
Kapnick S, Hall A. Observed climate–snowpack relationships in California and their implications for the future. Journal of Climate [Internet]. 2010;23 :3446–3456. Publisher's VersionAbstract
A study of the California Sierra Nevada snowpack has been conducted using snow station observations and reanalysis surface temperature data. Monthly snow water equivalent (SWE) measurements were combined from two datasets to provide sufficient data from 1930 to 2008. The monthly snapshots are used to calculate peak snow mass timing for each snow season. Since 1930, there has been an overall trend toward earlier snow mass peak timing by 0.6 days per decade. The trend toward earlier timing also occurs at nearly all individual stations. Even stations showing an increase in 1 April SWE exhibit the trend toward earlier timing, indicating that enhanced melting is occurring at nearly all stations. Analysis of individual years and stations reveals that warm daily maximum temperatures averaged over March and April are associated with earlier snow mass peak timing for all spatial and temporal scales included in the dataset. The influence is particularly pronounced for low accumulation years indicating the potential importance of albedo feedback for the melting of shallow snow. The robustness of the early spring temperature influence on peak timing suggests the trend toward earlier peak timing is attributable to the simultaneous warming trend (0.1°C decade−1 since 1930, with an acceleration in warming in later time periods). Given future scenarios of warming in California, one can expect acceleration in the trend toward earlier peak timing; this will reduce the warm season storage capacity of the California snowpack.
Pavelsky T, Kapnick S, Hall A. Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. Journal of Geophysical Research: Atmospheres [Internet]. 2011;116 :D16115. Publisher's VersionAbstract
The depth and timing of snowpack in the Sierra Nevada Mountains are of fundamental importance to California water resource availability, and recent studies indicate a shift toward earlier snowmelt consistent with projected impacts of anthropogenic climate change. In order for future studies to assess snowpack variability on seasonal to centennial time scales, physically based models of snowpack evolution at high spatial resolution must be improved. Here we evaluate modeled snowpack accuracy for the central Sierra Nevada in the Weather Research and Forecasting regional climate model coupled to the Noah land surface model. A simulation with nested domains at 27, 9, and 3 km grid spacings is presented for November 2001 to July 2002. Model outputs are compared with daily snowpack observations at 41 locations, air temperature at 31 locations, and precipitation at 10 locations. Comparison of snowpack at different resolutions suggests that 27 km simulations substantially underestimate snowpack, while 9 and 3 km simulations are closer to observations. Regional snowpack accumulation is accurately simulated at these high resolutions, but model snowmelt occurs an average of 22–25 days early. Some error can be traced to differences in elevation and observation scale between point‐based measurements and model grid cells, but these factors cannot explain the persistent bias toward early snowmelt. A high correlation between snowmelt and error in modeled surface air temperature is found, with melt coinciding systematically with excessively cold air temperatures. One possible source of bias is an imbalance in turbulent heat fluxes, erroneously warming the snowpack while cooling the surface atmosphere.
Hughes M, Hall A, Kim J. Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change [Internet]. 2011;109 (S1) :119–132. Publisher's VersionAbstract
The frequency and character of Southern California’s Santa Ana wind events are investigated within a 12-km-resolution downscaling of late-20th and mid-21st century time periods of the National Center for Atmospheric Research Community Climate System Model global climate change scenario run. The number of Santa Ana days per winter season is approximately 20% fewer in the mid 21st century compared to the late 20th century. Since the only systematic and sustained difference between these two periods is the level of anthropogenic forcing, this effect is anthropogenic in origin. In both time periods, Santa Ana winds are partly katabatically-driven by a temperature difference between the cold wintertime air pooling in the desert against coastal mountains and the adjacent warm air over the ocean. However, this katabatic mechanism is significantly weaker during the mid 21st century time period. This occurs because of the well-documented differential warming associated with transient climate change, with more warming in the desert interior than over the ocean. Thus the mechanism responsible for the decrease in Santa Ana frequency originates from a well-known aspect of the climate response to increasing greenhouse gases, but cannot be understood or simulated without mesoscale atmospheric dynamics. In addition to the change in Santa Ana frequency, we investigate changes during Santa Anas in two other meteorological variables known to be relevant to fire weather conditions—relative humidity and temperature. We find a decrease in the relative humidity and an increase in temperature. Both these changes would favor fire. A fire behavior model accounting for changes in wind, temperature, and relative humidity simultaneously is necessary to draw firm conclusions about future fire risk and growth associated with Santa Ana events. While our results are somewhat limited by a relatively small sample size, they illustrate an observed and explainable regional change in climate due to plausible mesoscale processes.
Neelin JD, Langenbrunner B, Meyerson JE, Hall A, Berg N. California winter precipitation change under global warming in the Coupled Model Intercomparison Project 5 ensemble. Journal of Climate [Internet]. 2013;26 :6238–6256. Publisher's VersionAbstract
Projections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an eastward extension of the region of strong Pacific jet stream, which appears to be a robust feature of the large-scale simulated changes. This suggests that effects of this jet extension in steering storm tracks toward the California coast constitute an important factor that should be assessed for impacts on incoming storm properties for high-resolution regional model assessments.
Kapnick S, Hall A. Causes of recent changes in western North American snowpack. Climate Dynamics [Internet]. 2012;40 (1–2) :109–121. Publisher's VersionAbstract
Changes in wintertime 10 m winds due to the El Niño-Southern Oscillation are examined using a 6 km resolution climate simulation of Southern California covering the period from 1959 through 2001. Wind speed statistics based on regional averages reveal a general signal of increased mean wind speeds and wind speed variability during El Niño across the region. An opposite and nearly as strong signal of decreased wind speed variability during La Niña is also found. These signals are generally more significant than the better-known signals in precipitation. In spite of these regional-scale generalizations, there are significant sub-regional mesoscale structures in the wind speed impacts. In some cases, impacts on mean winds and wind variability at the sub-regional scale are opposite to those of the region as a whole. All of these signals can be interpreted in terms of shifts in occurrences of the region’s main wind regimes due to the El Niño phenomenon. The results of this study can be used to understand how interannual wind speed variations in regions of Southern California are influenced by the El Niño phenomenon.
Hall A. Projecting regional change. Science [Internet]. 2014;346 (6216) :1461–1462. Publisher's VersionAbstract
Techniques to downscale global climate model (GCM) output and produce high-resolution climate change projections have emerged over the past two decades. GCM projections of future climate change, with typical resolutions of about 100 km, are now routinely downscaled to resolutions as high as hundreds of meters. Pressure to use these techniques to produce policy-relevant information is enormous. To prevent bad decisions, the climate science community must identify downscaling's strengths and limitations and develop best practices. A starting point for this discussion is to acknowledge that downscaled climate signals arising from warming are more credible than those arising from circulation changes.
Berg N, Hall A, Sun F, Capps SB, Walton DB, Langenbrunner B, Neelin JD. Mid 21st-century precipitation changes over the Los Angeles region. Journal of Climate [Internet]. 2015;28 (2) :401–421. Publisher's VersionAbstract
A new hybrid statistical–dynamical downscaling technique is described to project mid- and end-of-twenty-first-century local precipitation changes associated with 36 global climate models (GCMs) in phase 5 of the Coupled Model Intercomparison Project archive over the greater Los Angeles region. Land-averaged precipitation changes, ensemble-mean changes, and the spread of those changes for both time slices are presented. It is demonstrated that the results are similar to what would be produced if expensive dynamical downscaling techniques were instead applied to all GCMs. Changes in land-averaged ensemble-mean precipitation are near zero for both time slices, reflecting the region’s typical position in the models at the node of oppositely signed large-scale precipitation changes. For both time slices, the intermodel spread of changes is only about 0.2–0.4 times as large as natural interannual variability in the baseline period. A caveat to these conclusions is that interannual variability in the tropical Pacific is generally regarded as a weakness of the GCMs. As a result, there is some chance the GCM responses in the tropical Pacific to a changing climate and associated impacts on Southern California precipitation are not credible. It is subjectively judged that this GCM weakness increases the uncertainty of regional precipitation change, perhaps by as much as 25%. Thus, it cannot be excluded that the possibility that significant regional adaptation challenges related to either a precipitation increase or decrease would arise. However, the most likely downscaled outcome is a small change in local mean precipitation compared to natural variability, with large uncertainty on the sign of the change.
Walton DB, Sun F, Hall A, Capps SB. A hybrid dynamical–statistical downscaling technique, part I: Development and validation of the technique. Journal of Climate [Internet]. 2015;28 (12) :4597–4617. Publisher's VersionAbstract
In this study (Part I), the mid-twenty-first-century surface air temperature increase in the entire CMIP5 ensemble is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built relating the GCM input and the dynamically downscaled output. This statistical model is used to approximate the warming patterns of the remaining GCMs, as if they had been dynamically downscaled. The full 32-member ensemble allows for robust estimates of the most likely warming and uncertainty resulting from intermodel differences. The warming averaged over the region has an ensemble mean of 2.3°C, with a 95% confidence interval ranging from 1.0° to 3.6°C. Inland and high elevation areas warm more than coastal areas year round, and by as much as 60% in the summer months. A comparison to other common statistical downscaling techniques shows that the hybrid method produces similar regional-mean warming outcomes but demonstrates considerable improvement in capturing the spatial details. Additionally, this hybrid technique incorporates an understanding of the physical mechanisms shaping the region’s warming patterns, enhancing the credibility of the final results.
Sun F, Walton DB, Hall A. A hybrid dynamical–statistical downscaling technique, part II: End-of-century warming projections predict a new climate state in the Los Angeles region. Journal of Climate [Internet]. 2015;28 (12) :4618–4636. Publisher's VersionAbstract
Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981–2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041–60) and end of century (2081–2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges: average temperatures will almost certainly be outside the interannual variability range seen in the baseline. Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60–90 additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur. According to a similarity metric that measures daily temperature variability and the climate change signal, the RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the twenty-first century.
Berg N, Hall A. Increased interannual precipitation extremes over California under climate change. Journal of Climate [Internet]. 2015;28 (16) :6324–6334. Publisher's VersionAbstract
Changes to mean and extreme wet season precipitation over California on interannual time scales are analyzed using twenty-first-century precipitation data from 34 global climate models. Models disagree on the sign of projected changes in mean precipitation, although in most models the change is very small compared to historical and simulated levels of interannual variability. For the 2020/21–2059/60 period, there is no projected increase in the frequency of extremely dry wet seasons in the ensemble mean. Wet extremes are found to increase to around 2 times the historical frequency, which is statistically significant at the 95% level. Stronger signals emerge in the 2060/61–2099/2100 period. Across all models, extremely dry wet seasons are roughly 1.5 to 2 times more common, and wet extremes generally triple in their historical frequency (statistically significant). Large increases in precipitation variability in most models account for the modest increases to dry extremes. Increases in the frequency of wet extremes can be ascribed to equal contributions from increased variability and increases to the mean. These increases in the frequency of interannual precipitation extremes will create severe water management problems in a region where coping with large interannual variability in precipitation is already a challenge. Evidence from models and observations is examined to understand the causes of the low precipitation associated with the 2013/14 drought in California. These lines of evidence all strongly indicate that the low 2013/14 wet season precipitation total can be very likely attributed to natural variability, in spite of the projected future changes in extremes.

Pages