Oceans

The following list of publications details our work related to understanding the ocean’s role in climate change, and climate change’s impacts on oceans.
 

RELATED PUBLICATIONS

Medeiros B, Hall A, Stevens B. What controls the mean depth of the PBL?. Journal of Climate [Internet]. 2005;18 :3157–3172. Publisher's VersionAbstract
The depth of the planetary boundary layer (PBL) is a climatologically important quantity that has received little attention on regional to global scales. Here a 10-yr climatology of PBL depth from the University of California, Los Angeles (UCLA) atmospheric GCM is analyzed using the PBL mass budget. Based on the dominant physical processes, several PBL regimes are identified. These regimes tend to exhibit large-scale geographic organization. Locally generated buoyancy fluxes and static stability control PBL depth nearly everywhere, though convective mass flux has a large influence at tropical marine locations. Virtually all geographical variability in PBL depth can be linearly related to these quantities. While dry convective boundary layers dominate over land, stratocumulus-topped boundary layers are most common over ocean. This division of regimes leads to a dramatic land–sea contrast in PBL depth. Diurnal effects keep mean PBL depth over land shallow despite large daytime surface fluxes. The contrast arises because the large daily exchange of heat and mass between the PBL and free atmosphere over land is not present over the ocean, where mixing is accomplished by turbulent entrainment. Consistent treatment of remnant air from the deep, daytime PBL is necessary for proper representation of this diurnal behavior over land. Many locations exhibit seasonal shifts in PBL regime related to changes in PBL clouds. These shifts are controlled by seasonal variations in buoyancy flux and static stability.
Derevianko G, Deutsch C, Hall A. On the relationship between DMS and solar radiation. Geophysical Research Letters [Internet]. 2009;36 :L17606. Publisher's VersionAbstract
Biologically produced dimethylsulfide (DMS) is an important source of sulfur to the marine atmosphere that may affect cloud formation and properties. DMS is involved in a complex set of biochemical transformations and ecological exchanges so its global distribution is influenced by numerous factors, including oxidative stress from UV radiation. We re‐examine correlations between global surface DMS concentrations and mixed layer solar radiation dose (SRD), and find that SRD accounts for only a very small fraction (14%) of total variance in DMS measurements when using minimal aggregation methods. Moreover this relationship arises in part from the fact that when mixed layers deepen, both SRD and DMS decrease. When we control for this confounding effect, the correlation between DMS and SRD is reduced even further. These results indicate that factors other than solar irradiance play a leading role in determining global DMS emissions.
Boé J, Hall A, Qu X. Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophysical Research Letters [Internet]. 2009;36 :L22701. Publisher's VersionAbstract

Two main mechanisms can potentially explain the spread in the magnitude of global warming simulated by climate models: deep ocean heat uptake and climate feedbacks. Here, we show that deep oceanic heat uptake is a major source of spread in simulations of 21st century climate change. Models with deeper baseline polar mixed layers are associated with larger deep ocean warming and smaller global surface warming. Based on this result, we set forth an observational constraint on polar vertical oceanic mixing. This constraint suggests that many models may overestimate the efficiency of polar oceanic mixing and therefore may underestimate future surface warming. Thus to reduce climate change uncertainties at time‐scales relevant for policy‐making, improved understanding and modelling of oceanic mixing at high latitudes is crucial.

Boé J, Hall A, Colas F, McWilliams JC, Qu X, Kurian J, Kapnick S. What shapes mesoscale wind anomalies in coastal upwelling zones?. Climate Dynamics [Internet]. 2010;36 :2037–2049. Publisher's VersionAbstract
Observational studies have shown that mesoscale variations in sea surface temperature may induce mesoscale variations in wind. In eastern subtropical upwelling regions such as the California coast, this mechanism could be of great importance for the mean state and variability of the climate system. In coastal regions orography also creates mesoscale variations in wind, and the orographic effect may extend more than 100 km offshore. The respective roles of SST/wind links and coastal orography in shaping mesoscale wind variations in nearshore regions is not clear. We address this question in the context of the California Upwelling System, using a high-resolution regional numerical modeling system coupling the WRF atmospheric model to the ROMS oceanic model, as well as additional uncoupled experiments to quantify and separate the effects of SST/wind links and coastal orography on mesoscale wind variations. After taking into account potential biases in the representation of the strength of SST/wind links by the model, our results suggest that the magnitude of mesoscale wind variations arising from the orographic effects is roughly twice that of wind variations associated with mesoscale SST anomalies. This indicates that even in this region where coastal orography is complex and leaves a strong imprint on coastal winds, the role of SST/winds links in shaping coastal circulation and climate cannot be neglected.
Pavelsky T, Boé J, Hall A, Fetzer E. Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dynamics [Internet]. 2011;36 :945–955. Publisher's VersionAbstract
Low-level temperature inversions are a common feature of the wintertime troposphere in the Arctic and Antarctic. Inversion strength plays an important role in regulating atmospheric processes including air pollution, ozone destruction, cloud formation, and negative longwave feedback mechanisms that shape polar climate response to anthropogenic forcing. The Atmospheric Infrared Sounder (AIRS) instrument provides reliable measures of spatial patterns in mean wintertime inversion strength when compared with available radiosonde observations and reanalysis products. Here, we examine the influence of sea ice concentration on inversion strength in the Arctic and Antarctic. Correlation of inversion strength with mean annual sea ice concentration, likely a surrogate for the effective thermal conductivity of the wintertime ice pack, yields strong, linear relationships in the Arctic (r = 0.88) and Antarctic (r = 0.86). We find a substantially greater (stronger) linear relationship between sea ice concentration and surface air temperature than with temperature at 850 hPa, lending credence to the idea that sea ice controls inversion strength through modulation of surface heat fluxes. As such, declines in sea ice in either hemisphere may imply weaker mean inversions in the future. Comparison of mean inversion strength in AIRS and global climate models (GCMs) suggests that many GCMs poorly characterize mean inversion strength at high latitudes.
Dong C, McWilliams JC, Hall A, Hughes M. Numerical simulation of a synoptic event in the Southern California Bight. Journal of Geophysical Research: Oceans [Internet]. 2011;116 :C05018. Publisher's VersionAbstract
In the middle of March 2002 a synoptic upwelling event occurred in the Southern California Bight; it was marked by a precipitous cooling of at least 4°C within 10–20 km of the coast. By the end of the month the preevent temperatures had slowly recovered. The Regional Oceanic Model System (ROMS) is used to simulate the event with an atmospheric downscaling reanalysis for surface wind and buoyancy flux forcing. Lateral boundary conditions of temperature, salinity, velocity, and sea level are taken from a global oceanic product. Barotropic tidal fields from a global barotropic model are imposed along the open boundaries. The simulation reproduces well the upwelling process compared with observed data. The sensitivity of the simulation is examined to wind resolution, heat flux, and tidal forcing. The oceanic response to the different wind resolutions converges at the level of the 6 km resolution, which is the finest scale present in the terrain elevation data set used in the atmospheric downscaling. The combination of an analytical diurnal cycle in the solar radiation and the empirical coupling with the instantaneous ROMS sea surface temperature produces a similar oceanic response to the downscaled heat flux. Tidal effects are significant in the upwelling evolution due to the increase in wind energy input through a quasi‐resonant alignment of the wind and surface current, probably by chance.
Renault L, Hall A, McWilliams JC. Orographic shaping of US west coast wind profiles during the upwelling season. Climate Dynamics [Internet]. 2015;46 (1) :273–289. Publisher's VersionAbstract
Spatial and temporal variability of nearshore winds in eastern boundary current systems is affected by orography, coastline shape, and air-sea interaction. These lead to a weakening of the wind close to the coast: the so-called wind drop-off. In this study, regional atmospheric simulations over the US West Coast are used to demonstrate monthly characteristics of the wind drop-off and assess the mechanisms controlling it. Using a long-term simulation, we show the wind drop-off has spatial and seasonal variability in both its offshore extent and intensity. The offshore extent varies from around 10 to 80 km from the coast and the wind reduction from 10 to 80 %. We show that when the mountain orography is combined with the coastline shape of a cape, it has the biggest influence on wind drop-off. The primary associated processes are the orographically-induced vortex stretching and the surface drag related to turbulent momentum flux divergence that has an enhanced drag coefficient over land. Orographically-induced tilting/twisting can also be locally significant in the vicinity of capes. The land-sea drag difference acts as a barrier to encroachment of the wind onto the land through turbulent momentum flux divergence. It turns the wind parallel to the shore and slightly reduces it close to the coast. Another minor factor is the sharp coastal sea surface temperature front associated with upwelling. This can weaken the surface wind in the coastal strip by shallowing the marine boundary layer and decoupling it from the overlying troposphere.
Renault L, Molemaker MJ, McWilliams JC, Shchepetkin AF, Lemarié F, Chelton D, Illig S, Hall A. Modulation of wind-work by ocean current interaction with the atmosphere. Journal of Physical Oceanography [Internet]. 2016;46 (6) :1685–1704. Publisher's VersionAbstract
In this study, uncoupled and coupled ocean–atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean–atmosphere interactions, namely, the ocean surface current feedback to the atmosphere. The authors show the current feedback, by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic eddy kinetic energy (EKE). For the first time, it is demonstrated that the current feedback has an effect on the surface stress and a counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the nearshore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly reenergizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, the authors propose an additional energy element in the Lorenz diagram of energy conversion: namely, the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale.