Fire

The following list of publications details our work related to understanding climate change’s impacts on fire.
 

RELATED PUBLICATIONS

Moritz M, Moody T, Krawchuk M, Hughes M, Hall A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters [Internet]. 2010;37 :L04801. Publisher's VersionAbstract
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean‐climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high‐resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long‐term urban development on fire‐prone landscapes.
Jin Y, Randerson JT, Faivre N, Capps SB, Hall A, Goulden ML. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. Journal of Geophysical Research—Biogeosciences [Internet]. 2014;119 (3) :432–450. Publisher's VersionAbstract
Wildland fires in Southern California can be divided into two categories: fall fires, which are typically driven by strong offshore Santa Ana winds, and summer fires, which occur with comparatively weak onshore winds and hot and dry weather. Both types of fire contribute significantly to annual burned area and economic loss. An improved understanding of the relationship between Southern California's meteorology and fire is needed to improve predictions of how fire will change in the future and to anticipate management needs. We used output from a regional climate model constrained by reanalysis observations to identify Santa Ana events and partition fires into those occurring during periods with and without Santa Ana conditions during 1959–2009. We then developed separate empirical regression models for Santa Ana and non‐Santa Ana fires to quantify the effects of meteorology on fire number and size. These models explained approximately 58% of the seasonal and interannual variation in the number of Santa Ana fires and 36% of the variation in non‐Santa Ana fires. The number of Santa Ana fires increased during years when relative humidity during Santa Ana events and fall precipitation were below average, indicating that fuel moisture is a key controller of ignition. Relative humidity strongly affected Santa Ana fire size. Cumulative precipitation during the previous three winters was significantly correlated with the number of non‐Santa Ana fires, presumably through increased fine fuel density and connectivity between infrastructure and nearby vegetation. Both relative humidity and the preceding wet season precipitation influenced non‐Santa Ana fire size. Regression models driven by meteorology explained 57% of the temporal variation in Santa Ana burned area and 22% of the variation in non‐Santa Ana burned area. The area burned by non‐Santa Ana fires has increased steadily by 1.7% year−1 since 1959 (p < 0.006); the occurrence of extremely large Santa Ana fires has increased abruptly since 2003. Our results underscore the need to separately consider the fuel and meteorological controls on Santa Ana and non‐Santa Ana fires when projecting climate change impacts on regional fire.
Jin Y, Goulden ML, Faivre N, Veraverbeke S, Sun F, Hall A, Hand MS, Hook S, Randerson JT. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environmental Research Letters [Internet]. 2015;10 :094005. Publisher's VersionAbstract
The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial. Southern California's wildfires can be partitioned by meteorology: fires typically occur either during Santa Ana winds (SA fires) in October through April, or warm and dry periods in June through September (non-SA fires). Previous work has not quantitatively distinguished between these fire regimes when assessing economic impacts or climate change influence. Here we separate five decades of fire perimeters into those coinciding with and without SA winds. The two fire types contributed almost equally to burned area, yet SA fires were responsible for 80% of cumulative 1990–2009 economic losses ($3.1 Billion). The damage disparity was driven by fire characteristics: SA fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Non-SA fires were comparatively more sensitive to age-dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted for 70% of total suppression costs. An improved distinction of fire type has implications for future projections and management. The area burned in non-SA fires is projected to increase 77% (±43%) by the mid-21st century with warmer and drier summers, and the SA area burned is projected to increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of suppression investments.