Climate impacts

Climate impacts research is concerned with understanding how changes in the climate system affect other natural and human systems.

For example, what does warming mean for ecosystems? What do changes in the hydrologic cycle mean for water resources? Our group is active in taking climate science research beyond our own field so that we can diagnose future climate impacts and enable decision-makers to confront them. Often this work requires building interdisciplinary partnerships to bring in expertise from fields such as ecology, urban planning, public policy, economics, public health, and water resources management.


Jin Y, Goulden ML, Faivre N, Veraverbeke S, Sun F, Hall A, Hand MS, Hook S, Randerson JT. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environmental Research Letters [Internet]. 2015;10 :094005. Publisher's VersionAbstract
The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial. Southern California's wildfires can be partitioned by meteorology: fires typically occur either during Santa Ana winds (SA fires) in October through April, or warm and dry periods in June through September (non-SA fires). Previous work has not quantitatively distinguished between these fire regimes when assessing economic impacts or climate change influence. Here we separate five decades of fire perimeters into those coinciding with and without SA winds. The two fire types contributed almost equally to burned area, yet SA fires were responsible for 80% of cumulative 1990–2009 economic losses ($3.1 Billion). The damage disparity was driven by fire characteristics: SA fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Non-SA fires were comparatively more sensitive to age-dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted for 70% of total suppression costs. An improved distinction of fire type has implications for future projections and management. The area burned in non-SA fires is projected to increase 77% (±43%) by the mid-21st century with warmer and drier summers, and the SA area burned is projected to increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of suppression investments.
Vahmani P, Sun F, Hall A, Ban-Weiss G. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environmental Research Letters [Internet]. 2016;11 (12) :124027. Publisher's VersionAbstract
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.
Walton DB, Hall A, Berg N, Schwartz M, Sun F. Incorporating snow albedo feedback into downscaled temperature and snow cover projections for California’s Sierra Nevada. Journal of Climate [Internet]. 2017;30 (4) :1417–1438. Publisher's VersionAbstract

California’s Sierra Nevada is a high-elevation mountain range with significant seasonal snow cover. Under anthropogenic climate change, amplification of the warming is expected to occur at elevations near snow margins due to snow albedo feedback. However, climate change projections for the Sierra Nevada made by global climate models (GCMs) and statistical downscaling methods miss this key process. Dynamical downscaling simulates the additional warming due to snow albedo feedback. Ideally, dynamical downscaling would be applied to a large ensemble of 30 or more GCMs to project ensemble-mean outcomes and intermodel spread, but this is far too computationally expensive. To approximate the results that would occur if the entire GCM ensemble were dynamically downscaled, a hybrid dynamical–statistical downscaling approach is used. First, dynamical downscaling is used to reconstruct the historical climate of the 1981–2000 period and then to project the future climate of the 2081–2100 period based on climate changes from five GCMs. Next, a statistical model is built to emulate the dynamically downscaled warming and snow cover changes for any GCM. This statistical model is used to produce warming and snow cover loss projections for all available CMIP5 GCMs. These projections incorporate snow albedo feedback, so they capture the local warming enhancement (up to 3°C) from snow cover loss that other statistical methods miss. Capturing these details may be important for accurately projecting impacts on surface hydrology, water resources, and ecosystems.

Schwartz M, Hall A, Sun F, Walton DB, Berg N. Significant and inevitable end-of-21st-century advances in surface runoff timing in California's Sierra Nevada. Journal of Hydrometeorology [Internet]. 2017;18 (12) :3181–3197. Publisher's VersionAbstract
Using hybrid dynamical–statistical downscaling, 3-km-resolution end-of-twenty-first-century runoff timing changes over California’s Sierra Nevada for all available global climate models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are projected. All four representative concentration pathways (RCPs) adopted by the Intergovernmental Panel on Climate Change’s Fifth Assessment Report are examined. These multimodel, multiscenario projections allow for quantification of ensemble-mean runoff timing changes and an associated range of possible outcomes due to both intermodel variability and choice of forcing scenario. Under a “business as usual” forcing scenario (RCP8.5), warming leads to a shift toward much earlier snowmelt-driven surface runoff in 2091–2100 compared to 1991–2000, with advances of as much as 80 days projected in the 35-model ensemble mean. For a realistic “mitigation” scenario (RCP4.5), the ensemble-mean change is smaller but still large (up to 30 days). For all plausible forcing scenarios and all GCMs, the simulated changes are statistically significant, so that a detectable change in runoff timing is inevitable. Even for the mitigation scenario, the ensemble-mean change is approximately equivalent to one standard deviation of the natural variability at most elevations. Thus, even when greenhouse gas emissions are curtailed, the runoff change is climatically significant. For the business-as-usual scenario, the ensemble-mean change is approximately two standard deviations of the natural variability at most elevations, portending a truly dramatic change in surface hydrology by the century’s end if greenhouse gas emissions continue unabated.
Huang X, Hall A, Berg N. Anthropogenic warming impacts on today's Sierra Nevada snowpack and flood risk. Geophysical Research Letters [Internet]. 2018;45 (12) :6215–6222. Publisher's VersionAbstract
This study investigates temperature impacts to snowpack and runoff‐driven flood risk over the Sierra Nevada during the extremely wet year of 2016–2017, which followed the extraordinary California drought of 2011–2015. By perturbing near‐surface temperatures from a 9‐km dynamically downscaled simulation, a series of offline land surface model experiments explore how Sierra Nevada hydrology has already been impacted by historical anthropogenic warming and how these impacts evolve under future warming scenarios. Results show that historical warming reduced 2016–2017 Sierra Nevada snow water equivalent by 20% while increasing early‐season runoff by 30%. An additional one third to two thirds loss of snowpack is projected by the end of the century, depending on the emission scenario, with middle elevations experiencing the most significant declines. Notably, the number of days in the future with runoff exceeding 20 mm nearly doubles under a mitigation emission scenarios and triples under a business‐as‐usual scenario. A smaller snow‐to‐rain ratio, as opposed to increased snowmelt, is found to be the primary mechanism of temperature impacts to Sierra snowpack and runoff. These findings are consequential to the prevalence of early‐season floods in the Sierra Nevada. In the Feather River Watershed, historical warming increased runoff by over one third during the period of heaviest precipitation in February 2017. This suggests that historical anthropogenic warming may have exacerbated runoff conditions underlying the Oroville Dam spillway overflow that occurred in this month. As warming continues in the future, the potential for runoff‐based flood risk may rise even higher.
Sun F, Berg N, Hall A, Schwartz M. Understanding end‐of‐century snowpack changes over California's Sierra Nevada. Geophysical Research Letters [Internet]. 2019;46 (2) :933–943. Publisher's VersionAbstract
This study uses dynamical and statistical methods to understand end‐of‐century mean changes to Sierra Nevada snowpack. Dynamical results reveal mid‐elevation watersheds experience considerably more rain than snow during winter, leading to substantial snowpack declines by spring. Despite some high‐elevation watersheds receiving slightly more snow in January and February, the warming signal still dominates across the wet‐season and leads to notable declines by springtime. A statistical model is created to mimic dynamical results for April 1 snowpack, allowing for an efficient downscaling of all available General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5. For all GCMs and emissions scenarios, dramatic April 1 snowpack loss occurs at elevations below 2500 meters, despite increased precipitation in many GCMs. Only 36% (±12%) of historical April 1 total snow water equivalent volume remains at the century's end under a “business‐as‐usual” emissions scenario, with 70% (±12%) remaining under a realistic “mitigation” scenario.