Significant and inevitable end-of-21st-century advances in surface runoff timing in California's Sierra Nevada

Citation:

Schwartz, M, A Hall, F Sun, DB Walton, and N Berg. 2017. “Significant and inevitable end-of-21st-century advances in surface runoff timing in California's Sierra Nevada.” Journal of Hydrometeorology 18 (12): 3181–3197.

Abstract:

Using hybrid dynamical–statistical downscaling, 3-km-resolution end-of-twenty-first-century runoff timing changes over California’s Sierra Nevada for all available global climate models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are projected. All four representative concentration pathways (RCPs) adopted by the Intergovernmental Panel on Climate Change’s Fifth Assessment Report are examined. These multimodel, multiscenario projections allow for quantification of ensemble-mean runoff timing changes and an associated range of possible outcomes due to both intermodel variability and choice of forcing scenario. Under a “business as usual” forcing scenario (RCP8.5), warming leads to a shift toward much earlier snowmelt-driven surface runoff in 2091–2100 compared to 1991–2000, with advances of as much as 80 days projected in the 35-model ensemble mean. For a realistic “mitigation” scenario (RCP4.5), the ensemble-mean change is smaller but still large (up to 30 days). For all plausible forcing scenarios and all GCMs, the simulated changes are statistically significant, so that a detectable change in runoff timing is inevitable. Even for the mitigation scenario, the ensemble-mean change is approximately equivalent to one standard deviation of the natural variability at most elevations. Thus, even when greenhouse gas emissions are curtailed, the runoff change is climatically significant. For the business-as-usual scenario, the ensemble-mean change is approximately two standard deviations of the natural variability at most elevations, portending a truly dramatic change in surface hydrology by the century’s end if greenhouse gas emissions continue unabated.

Publisher's Version

Last updated on 04/24/2019