Publications by Author: MHughes

2014
Capps, SB, A Hall, and M Hughes. 2014. “Sensitivity of Southern California wind energy to turbine characteristics.” Wind Energy 17 (1): 141–159. Publisher's Version Abstract
Using output from a high‐resolution meteorological simulation, we evaluate the sensitivity of southern California wind energy generation to variations in key characteristics of current wind turbines. These characteristics include hub height, rotor diameter and rated power, and depend on turbine make and model. They shape the turbine's power curve and thus have large implications for the energy generation capacity of wind farms. For each characteristic, we find complex and substantial geographical variations in the sensitivity of energy generation. However, the sensitivity associated with each characteristic can be predicted by a single corresponding climate statistic, greatly simplifying understanding of the relationship between climate and turbine optimization for energy production. In the case of the sensitivity to rotor diameter, the change in energy output per unit change in rotor diameter at any location is directly proportional to the weighted average wind speed between the cut‐in speed and the rated speed. The sensitivity to rated power variations is likewise captured by the percent of the wind speed distribution between the turbines rated and cut‐out speeds. Finally, the sensitivity to hub height is proportional to lower atmospheric wind shear. Using a wind turbine component cost model, we also evaluate energy output increase per dollar investment in each turbine characteristic. We find that rotor diameter increases typically provide a much larger wind energy boost per dollar invested, although there are some zones where investment in the other two characteristics is competitive. Our study underscores the need for joint analysis of regional climate, turbine engineering and economic modeling to optimize wind energy production.
2013
Berg, N, A Hall, SB Capps, and M Hughes. 2013. “El Niño–Southern Oscillation impacts on winter winds over Southern California.” Climate Dynamics 40 (1–2): 109–121. Publisher's Version Abstract
Changes in wintertime 10 m winds due to the El Niño-Southern Oscillation are examined using a 6 km resolution climate simulation of Southern California covering the period from 1959 through 2001. Wind speed statistics based on regional averages reveal a general signal of increased mean wind speeds and wind speed variability during El Niño across the region. An opposite and nearly as strong signal of decreased wind speed variability during La Niña is also found. These signals are generally more significant than the better-known signals in precipitation. In spite of these regional-scale generalizations, there are significant sub-regional mesoscale structures in the wind speed impacts. In some cases, impacts on mean winds and wind variability at the sub-regional scale are opposite to those of the region as a whole. All of these signals can be interpreted in terms of shifts in occurrences of the region’s main wind regimes due to the El Niño phenomenon. The results of this study can be used to understand how interannual wind speed variations in regions of Southern California are influenced by the El Niño phenomenon.
2011
Dong, C, JC McWilliams, A Hall, and M Hughes. 2011. “Numerical simulation of a synoptic event in the Southern California Bight.” Journal of Geophysical Research: Oceans 116: C05018. Publisher's Version Abstract
In the middle of March 2002 a synoptic upwelling event occurred in the Southern California Bight; it was marked by a precipitous cooling of at least 4°C within 10–20 km of the coast. By the end of the month the preevent temperatures had slowly recovered. The Regional Oceanic Model System (ROMS) is used to simulate the event with an atmospheric downscaling reanalysis for surface wind and buoyancy flux forcing. Lateral boundary conditions of temperature, salinity, velocity, and sea level are taken from a global oceanic product. Barotropic tidal fields from a global barotropic model are imposed along the open boundaries. The simulation reproduces well the upwelling process compared with observed data. The sensitivity of the simulation is examined to wind resolution, heat flux, and tidal forcing. The oceanic response to the different wind resolutions converges at the level of the 6 km resolution, which is the finest scale present in the terrain elevation data set used in the atmospheric downscaling. The combination of an analytical diurnal cycle in the solar radiation and the empirical coupling with the instantaneous ROMS sea surface temperature produces a similar oceanic response to the downscaled heat flux. Tidal effects are significant in the upwelling evolution due to the increase in wind energy input through a quasi‐resonant alignment of the wind and surface current, probably by chance.
Hughes, M, A Hall, and J Kim. 2011. “Human-induced changes in wind, temperature and relative humidity during Santa Ana events.” Climatic Change 109 (S1): 119–132. Publisher's Version Abstract
The frequency and character of Southern California’s Santa Ana wind events are investigated within a 12-km-resolution downscaling of late-20th and mid-21st century time periods of the National Center for Atmospheric Research Community Climate System Model global climate change scenario run. The number of Santa Ana days per winter season is approximately 20% fewer in the mid 21st century compared to the late 20th century. Since the only systematic and sustained difference between these two periods is the level of anthropogenic forcing, this effect is anthropogenic in origin. In both time periods, Santa Ana winds are partly katabatically-driven by a temperature difference between the cold wintertime air pooling in the desert against coastal mountains and the adjacent warm air over the ocean. However, this katabatic mechanism is significantly weaker during the mid 21st century time period. This occurs because of the well-documented differential warming associated with transient climate change, with more warming in the desert interior than over the ocean. Thus the mechanism responsible for the decrease in Santa Ana frequency originates from a well-known aspect of the climate response to increasing greenhouse gases, but cannot be understood or simulated without mesoscale atmospheric dynamics. In addition to the change in Santa Ana frequency, we investigate changes during Santa Anas in two other meteorological variables known to be relevant to fire weather conditions—relative humidity and temperature. We find a decrease in the relative humidity and an increase in temperature. Both these changes would favor fire. A fire behavior model accounting for changes in wind, temperature, and relative humidity simultaneously is necessary to draw firm conclusions about future fire risk and growth associated with Santa Ana events. While our results are somewhat limited by a relatively small sample size, they illustrate an observed and explainable regional change in climate due to plausible mesoscale processes.
2010
Hughes, M, and A Hall. 2010. “Local and synoptic mechanisms causing Southern California's Santa Ana winds.” Climate Dynamics 34 (6): 847–857. Publisher's Version Abstract
The atmospheric conditions that lead to strong offshore surface winds in Southern California, commonly referred to as Santa Ana winds, are investigated using the North American Regional Reanalysis and a 12-year, 6-km resolution regional climate simulation of Southern California. We first construct an index to characterize Santa Ana events based on offshore wind strength. This index is then used to identify the average synoptic conditions associated with Santa Ana events—a high pressure anomaly over the Great Basin. This pressure anomaly causes offshore geostrophic winds roughly perpendicular to the region’s mountain ranges, which in turn cause surface flow as the offshore momentum is transferred to the surface. We find, however, that there are large variations in the synoptic conditions during Santa Ana conditions, and that there are many days with strong offshore flow and weak synoptic forcing. This is due to local thermodynamic forcing that also causes strong offshore surface flow: a large temperature gradient between the cold desert surface and the warm ocean air at the same altitude creates an offshore pressure gradient at that altitude, in turn causing katabatic-like offshore flow in a thin layer near the surface. We quantify the contribution of “synoptic” and “local thermodynamic” mechanisms using a bivariate linear regression model, and find that, unless synoptic conditions force strongly onshore winds, the local thermodynamic forcing is the primary control on Santa Ana variability.
Moritz, M, T Moody, M Krawchuk, M Hughes, and A Hall. 2010. “Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems.” Geophysical Research Letters 37: L04801. Publisher's Version Abstract
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean‐climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high‐resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long‐term urban development on fire‐prone landscapes.
2009
Hughes, M, A Hall, and RG Fovell. 2009. “Blocking in areas of complex topography, and its influence on rainfall distribution.” Journal of the Atmospheric Sciences 66: 508–518. Publisher's Version Abstract

Using a 6-km-resolution regional climate simulation of Southern California, the effect of orographic blocking on the precipitation climatology is examined. To diagnose whether blocking occurs, precipitating hours are categorized by a bulk Froude number. The precipitation distribution becomes much more spatially homogeneous as the Froude number decreases, and an inspection of winds confirms that this results from the increasing prevalence of orographic blocking. Low Froude (Froude approximately less than 1), blocked cases account for a large fraction of climatological precipitation, particularly at the coastline where more than half is attributable to blocked cases. Thus, the climatological precipitation–slope relationship seen in observations and in the simulation is a hybrid of blocked and unblocked cases.

Simulated precipitation distributions are compared to those predicted by a simple linear model that includes only rainfall arising from direct forced topographic ascent. The agreement is nearly perfect for high Froude (Froude substantially larger than 1) cases but degrades dramatically as the index decreases; as blocking becomes more prevalent, the precipitation–slope relationship becomes continuously weaker than that predicted by the linear model. Because of its high fidelity during unblocked cases, it is surmised that blocking effects are the primary limitation preventing the linear model from accurately representing precipitation climatology and that the representation would be significantly improved during low Froude hours by the addition of a term to reduce the effective slope of the topography. These results suggest orographic blocking may substantially affect climatological precipitation distributions in similarly configured coastal areas.

2007
Hughes, M, A Hall, and RG Fovell. 2007. “Dynamical controls on the diurnal cycle of temperature in complex topography.” Climate Dynamics 29: 277–292. Publisher's Version Abstract
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.