Publications by Author: HY Huang

2016
In this study we developed and examined a hybrid modeling approach integrating physically-based equations and statistical downscaling to estimate fine-scale daily-mean surface turbulent fluxes (i.e., sensible and latent heat fluxes) for a region of southern California that is extensively covered by varied vegetation types over a complex terrain. The selection of model predictors is guided by physical parameterizations of surface flux used in land surface models and analysis showing net shortwave radiation that is a major source of variability in the surface energy budget. Through a structure of multivariable regression processes with an application of near-surface wind estimates from a previous study, we successfully reproduce dynamically-downscaled 3 km resolution surface flux data. The overall error in our estimates is less than 20 % for both sensible and latent heat fluxes, while slightly larger errors are seen in high-altitude regions. The major sources of error in estimates include the limited information provided in coarse reanalysis data, the accuracy of near-surface wind estimates, and an ignorance of the nonlinear diurnal cycle of surface fluxes when using daily-mean data. However, with reasonable and acceptable errors, this hybrid modeling approach provides promising, fine-scale products of surface fluxes that are much more accurate than reanalysis data, without performing intensive dynamical simulations.
2015
Huang, HY, SB Capps, SC Huang, and A Hall. 2015. “Downscaling near-surface wind over complex terrain using a physically-based statistical modeling approach.” Climate Dynamics 44 (1–2): 529–542. Publisher's Version Abstract
A physically-based statistical modeling approach to downscale coarse resolution reanalysis near-surface winds over a region of complex terrain is developed and tested in this study. Our approach is guided by physical variables and meteorological relationships that are important for determining near-surface wind flow. Preliminary fine scale winds are estimated by correcting the course-to-fine grid resolution mismatch in roughness length. Guided by the physics shaping near-surface winds, we then formulate a multivariable linear regression model which uses near-surface micrometeorological variables and the preliminary estimates as predictors to calculate the final wind products. The coarse-to-fine grid resolution ratio is approximately 10–1 for our study region of southern California. A validated 3-km resolution dynamically-downscaled wind dataset is used to train and validate our method. Winds from our statistical modeling approach accurately reproduce the dynamically-downscaled near-surface wind field with wind speed magnitude and wind direction errors of <1.5 ms−1 and 30°, respectively. This approach can greatly accelerate the production of near-surface wind fields that are much more accurate than reanalysis data, while limiting the amount of computational and time intensive dynamical downscaling. Future studies will evaluate the ability of this approach to downscale other reanalysis data and climate model outputs with varying coarse-to-fine grid resolutions and domains of interest.
2013
Huang, HY, A Hall, and J Teixeira. 2013. “Evaluation of the WRF PBL parameterizations for marine boundary layer clouds: Cumulus and stratocumulus.” Monthly Weather Review 141: 2265–2271. Publisher's Version Abstract
The performance of five boundary layer parameterizations in the Weather Research and Forecasting Model is examined for marine boundary layer cloud regions running in single-column mode. Most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. These comparisons against large-eddy simulation show that a parameterization based on the eddy-diffusivity/mass-flux approach provides a better performance. The results also illustrate the key role of boundary layer parameterizations in model performance.