Publications by Author: DLSwain

2021
Goldenson, Naomi, C Thackery, A Hall, DL Swain, and N Berg. 2021. “Using Large Ensembles to Identify Regions of Systematic Biases in Moderate-to-Heavy Daily Precipitation.” Geophysical Research Letters 48 (9): e2020GL092026. Publisher's Version Abstract
Because of internal variability in both the real-world and global climate models, it is unclear whether disagreement between models and observations reflects true systematic differences, or different phasing of internal variability in the short observational period. Here, we address this issue through an examination of moderate-to-heavy precipitation in large ensembles of global climate models. We find that model inconsistency with a global observational product is lowest for extratropical precipitation in northern hemisphere winter. The inconsistency is systematically greater for the southern hemisphere winter, but the difference between hemispheres could be due to observational quality. Moderate-to-heavy extratropical winter precipitation is less inconsistent than moderate-to-heavy tropical precipitation in most models. Within the tropics, moderate-to-heavy precipitation is particularly inconsistent with the reference in regions including the Caribbean (especially during JJA), the northern and southern flanks of the Pacific and Atlantic ITCZ, and the Indian Ocean.
2020
Huang, X, DL Swain, and A Hall. 2020. “Large ensemble downscaling of atmospheric rivers.” Science Advances 6 (29): e2020GL088679. Publisher's Version Abstract
Precipitation extremes will likely intensify under climate change. However, much uncertainty surrounds intensification of high-magnitude events that are often inadequately resolved by global climate models. In this analysis, we develop a framework involving targeted dynamical downscaling of historical and future extreme precipitation events produced by a large ensemble of a global climate model. This framework is applied to extreme “atmospheric river” storms in California. We find a substantial (10 to 40%) increase in total accumulated precipitation, with the largest relative increases in valleys and mountain lee-side areas. We also report even higher and more spatially uniform increases in hourly maximum precipitation intensity, which exceed Clausius-Clapeyron expectations. Up to 85% of this increase arises from thermodynamically driven increases in water vapor, with a smaller contribution by increased zonal wind strength. These findings imply substantial challenges for water and flood management in California, given future increases in intense atmospheric river-induced precipitation extremes.
Paper Summary Infographic
Huang, X, DL Swain, DB Walton, S Stevenson, and A Hall. 2020. “Simulating and Evaluating Atmospheric River‐Induced Precipitation Extremes Along the U.S. Pacific Coast: Case Studies From 1980–2017.” Journal of Geophysical Research: Atmospheres 125 (4). Publisher's Version Abstract
Atmospheric rivers (ARs) are responsible for a majority of extreme precipitation and flood events along the U.S. West Coast. To better understand the present‐day characteristics of AR‐related precipitation extremes, a selection of nine most intense historical AR events during 1980–2017 is simulated using a dynamical downscaling modeling framework based on the Weather Research and Forecasting Model. We find that the chosen framework and Weather Research and Forecasting Model configuration reproduces both large‐scale atmospheric features—including parent synoptic‐scale cyclones—as well as the filamentary corridors of integrated vapor transport associated with the ARs themselves. The accuracy of simulated extreme precipitation maxima, relative to in situ and interpolated gridded observations, improves notably with increasing model resolution, with improvements as large as 40–60% for fine scale (3 km) relative to coarse‐scale (27 km) simulations. A separate set of simulations using smoothed topography suggests that much of these gains stem from the improved representation of complex terrain. Additionally, using the 12 December 1995 storm in Northern California as an example, we demonstrate that only the highest‐resolution simulations resolve important fine‐scale features—such as localized orographically forced vertical motion and powerful near hurricane‐force boundary layer winds. Given the demonstrated ability of a targeted dynamical downscaling framework to capture both local extreme precipitation and key fine‐scale characteristics of the most intense ARs in the historical record, we argue that such a configuration may be highly conducive to understanding AR‐related extremes and associated changes in a warming climate.
2018
Swain, DL, B Langenbrunner, JD Neelin, and A Hall. 2018. “Increasing precipitation volatility in twenty-first-century California.” Nature Climate Change 8: 427–433. Publisher's Version Abstract
Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California’s rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016–2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California’s ‘Great Flood of 1862’. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California’s existing water storage, conveyance and flood control infrastructure.
Paper Summary Infographic
Thackeray, CW, AM DeAngelis, A Hall, DL Swain, and X Qu. 2018. “On the connection between global hydrologic sensitivity and regional wet extremes.” Geophysical Research Letters 45 (20): 11,343–11,351. Publisher's Version Abstract
A highly uncertain aspect of anthropogenic climate change is the rate at which the global hydrologic cycle intensifies. The future change in global‐mean precipitation per degree warming, or hydrologic sensitivity, exhibits a threefold spread (1–3%/K) in current global climate models. In this study, we find that the intermodel spread in this value is associated with a significant portion of variability in future projections of extreme precipitation in the tropics, extending also into subtropical atmospheric river corridors. Additionally, there is a very tight intermodel relationship between changes in extreme and nonextreme precipitation, whereby models compensate for increasing extreme precipitation events by decreasing weak‐moderate events. Another factor linked to changes in precipitation extremes is model resolution, with higher resolution models showing a larger increase in heavy extremes. These results highlight ways various aspects of hydrologic cycle intensification are linked in models and shed new light on the task of constraining precipitation extremes.