Publications by Author: CWThackeray

2023
Cropper, S, CW Thackeray, and J Emile-Geay. 2023. “Revisiting a Constraint on Equilibrium Climate Sensitivity From a Last Millennium Perspective.” Geophysical Research Letters 50 (20): e2023GL104126. Publisher's Version Abstract
Despite decades of effort to constrain equilibrium climate sensitivity (ECS), current best estimates still exhibit a large spread. Past studies have sought to reduce ECS uncertainty through a variety of methods including emergent constraints. One example uses global temperature variability over the past century to constrain ECS. While this method shows promise, it has been criticized for its susceptibility to the influence of anthropogenic forcing and the limited length of the instrumental record used to compute temperature variability. Here, we investigate the emergent relationship between ECS and two metrics of global temperature variability using model simulations and paleoclimate reconstructions over the last millennium (850–1999). We find empirical evidence in support of these emergent relationships. Observational constraints suggest a central ECS estimate of 2.6–2.8 K, consistent with the Intergovernmental Panel on Climate Change's consensus estimate of 3K. Moreover, they suggest ECS “likely” ranges of 1.8–3.3 K and 2.0–3.6 K.
2019
Thackeray, CW, and A Hall. 2019. “An emergent constraint on future Arctic sea-ice albedo feedback.” Nature Climate Change 9: 972–978. Publisher's Version Abstract
Arctic sea ice has decreased substantially over recent decades, a trend projected to continue. Shrinking ice reduces surface albedo, leading to greater surface solar absorption, thus amplifying warming and driving further melt. This sea-ice albedo feedback (SIAF) is a key driver of Arctic climate change and an important uncertainty source in climate model projections. Using an ensemble of models, we demonstrate an emergent relationship between future SIAF and an observable version of SIAF in the current climate’s seasonal cycle. This relationship is robust in constraining SIAF over the coming decades (Pearson’s r = 0.76), and then it degrades. The degradation occurs because some models begin producing ice-free conditions, signalling a transition to a new ice regime. The relationship is strengthened when models with unrealistically thin historical ice are excluded. Because of this tight relationship, reducing model errors in the current climate’s seasonal SIAF and ice thickness can narrow SIAF spread under climate change.
Paper Summary Infographic Sea Ice Albedo Feedback Explainer Graphic
Thackeray, CW, C Derksen, CG Fletcher, and A Hall. 2019. “Snow and climate: Feedbacks, drivers, and indices of change.” Current Climate Change Reports 5 (4): 322–333. Publisher's Version Abstract

Purpose of Review

Highlight significant developments that have recently been made to enhance our understanding of how snow responds to climate forcing and the role that snow plays in the climate system.

Recent Findings

Widespread snow loss has occurred in recent decades, with the largest decreases in spring. These changes are primarily driven by temperature and precipitation, but changes in vegetation, light-absorbing impurities, and sea ice also contribute to variability. Changes in snow cover can also affect climate through the snow albedo feedback (SAF). Recently, considerable progress has been made in better understanding the processes contributing to SAF. We also highlight advances in knowledge of how snow variability is linked to large-scale atmospheric changes. Lastly, large-scale snow losses are expected to continue under climate change in all but the coldest climates. These projected changes to snow raise considerable concerns over future freshwater availability in snow-dominated watersheds.

Summary

The results discussed here demonstrate the widespread implications that changes to snow have on the climate system and anthropogenic activity at large.

2018
Thackeray, CW, X Qu, and A Hall. 2018. “Why do models produce spread in snow albedo feedback?” Geophysical Research Letters 45 (12): 6223–6231. Publisher's Version Abstract
Snow albedo feedback (SAF) behaves similarly in the current and future climate contexts; thus, constraining the large intermodel variance in SAF will likely reduce uncertainty in climate projections. To better understand this intermodel spread, structural and parametric biases contributing to SAF variability are investigated. We find that structurally varying snowpack, vegetation, and albedo parameterizations drive most of the spread, while differences arising from model parameters are generally smaller. Models with the largest SAF biases exhibit clear structural or parametric errors. Additionally, despite widespread intermodel similarities, model interdependency has little impact on the strength of the relationship between SAF in the current and future climate contexts. Furthermore, many models now feature a more realistic SAF than in the prior generation, but shortcomings from two models limit the reduction in ensemble spread. Lastly, preliminary signs from ongoing model development are positive and suggest a likely reduction in SAF spread among upcoming models.
Thackeray, CW, AM DeAngelis, A Hall, DL Swain, and X Qu. 2018. “On the connection between global hydrologic sensitivity and regional wet extremes.” Geophysical Research Letters 45 (20): 11,343–11,351. Publisher's Version Abstract
A highly uncertain aspect of anthropogenic climate change is the rate at which the global hydrologic cycle intensifies. The future change in global‐mean precipitation per degree warming, or hydrologic sensitivity, exhibits a threefold spread (1–3%/K) in current global climate models. In this study, we find that the intermodel spread in this value is associated with a significant portion of variability in future projections of extreme precipitation in the tropics, extending also into subtropical atmospheric river corridors. Additionally, there is a very tight intermodel relationship between changes in extreme and nonextreme precipitation, whereby models compensate for increasing extreme precipitation events by decreasing weak‐moderate events. Another factor linked to changes in precipitation extremes is model resolution, with higher resolution models showing a larger increase in heavy extremes. These results highlight ways various aspects of hydrologic cycle intensification are linked in models and shed new light on the task of constraining precipitation extremes.
Krinner, G, C Derksen, R Essery, M Flanner, S Hagemann, M Clark, A Hall, et al. 2018. “ESM-SnowMIP: Assessing models and quantifying snow-related climate feedbacks.” Geoscientific Model Development 11: 5027–5049. Publisher's Version Abstract
This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).