Differences in simulations of climate feedbacks are sources of significant divergence in climate models' temperature response to anthropogenic forcing. Snow albedo feedback is particularly critical for climate change prediction in heavily‐populated northern hemisphere land masses. Here we show its strength in current models exhibits a factor‐of‐three spread. These large intermodel variations in feedback strength in climate change are nearly perfectly correlated with comparably large intermodel variations in feedback strength in the context of the seasonal cycle. Moreover, the feedback strength in the real seasonal cycle can be measured and compared to simulated values. These mostly fall outside the range of the observed estimate, suggesting many models have an unrealistic snow albedo feedback in the seasonal cycle context. Because of the tight correlation between simulated feedback strength in the seasonal cycle and climate change, eliminating the model errors in the seasonal cycle will lead directly to a reduction in the spread of feedback strength in climate change. Though this comparison to observations may put the models in an unduly harsh light because of uncertainties in the observed estimate that are difficult to quantify, our results map out a clear strategy for targeted observation of the seasonal cycle to reduce divergence in simulations of climate sensitivity.
We developed a three‐dimensional radiative transfer model simulating solar fluxes over mountain surfaces precisely given distributions of atmospheric scatterers and absorbers. The model quantifies direct, diffuse, terrain‐reflected, and coupling (i.e., photons reflected and scattered more than once) fluxes. We applied it to a midlatitude mountainous surface to study these components' diurnal, seasonal, and geographical variability under clear skies. Domain‐averaged direct and diffuse fluxes together comprise over 96% of the flux year‐round, with diffuse fluxes' relative importance varying inversely with that of direct radiation. Direct fluxes generally account for at least 80% of the total. However, the domain‐averaged diffuse flux proportion increases to nearly 40% at high zenith angles, and approaches 100% when neighboring slopes obscure the surface from the Sun. Terrain‐reflected and coupling components each account for less than 1% throughout much of the year. However, together they comprise ∼3% when surface albedo increases during winter and are similarly nonnegligible in deep valleys all year. We also studied controls on geographical variations in flux components: The sky view factor, a conventional predictor of diffuse fluxes, is surprisingly weakly correlated with them, posing a parameterization challenge. Terrain‐reflected and coupling fluxes may be easier to parameterize given topography. Finally, we assessed shortwave errors in General Circulation Models with smoothed topography by comparing results with the mountainous surface to identical calculations for a flat surface with the same mean elevation. The differences range from 5 to 20 W/m2 and arise because the atmosphere absorbs a different amount of sunshine when underlying topography is smoothed.
The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model was forced by reanalysis boundary conditions over the period 1995–2003. The region is approximately the same size as a typical grid box of the current generation of general circulation models used for global climate prediction and reanalysis product generation, and so can be thought of as a laboratory for the study of climate at spatial scales smaller than those resolved by global simulations and reanalysis products. It is found that the simulated circulation during the October–March wet season, when variability is most significant, can be understood through an objective classification technique in terms of three wind regimes. The composite surface wind patterns associated with these regimes exhibit significant spatial structure within the model domain, consistent with the complex topography of the region. These regimes also correspond nearly perfectly with the simulation’s highly structured patterns of variability in hydrology and temperature, and therefore are the main contributors to the local climate variability. The regimes are approximately equally likely to occur regardless of the phase of the classical large-scale modes of atmospheric variability prevailing in the Pacific–North American sector. The high degree of spatial structure of the local regimes and their tightly associated climate impacts, as well as their ambiguous relationship with the primary modes of large-scale variability, demonstrate that the local perspective offered by the high-resolution model is necessary to understand and predict the climate variations of the region.
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.
In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.