Publications by Author: AHall

2015
Renault, L, A Hall, and JC McWilliams. 2015. “Orographic shaping of US west coast wind profiles during the upwelling season.” Climate Dynamics 46 (1): 273–289. Publisher's Version Abstract
Spatial and temporal variability of nearshore winds in eastern boundary current systems is affected by orography, coastline shape, and air-sea interaction. These lead to a weakening of the wind close to the coast: the so-called wind drop-off. In this study, regional atmospheric simulations over the US West Coast are used to demonstrate monthly characteristics of the wind drop-off and assess the mechanisms controlling it. Using a long-term simulation, we show the wind drop-off has spatial and seasonal variability in both its offshore extent and intensity. The offshore extent varies from around 10 to 80 km from the coast and the wind reduction from 10 to 80 %. We show that when the mountain orography is combined with the coastline shape of a cape, it has the biggest influence on wind drop-off. The primary associated processes are the orographically-induced vortex stretching and the surface drag related to turbulent momentum flux divergence that has an enhanced drag coefficient over land. Orographically-induced tilting/twisting can also be locally significant in the vicinity of capes. The land-sea drag difference acts as a barrier to encroachment of the wind onto the land through turbulent momentum flux divergence. It turns the wind parallel to the shore and slightly reduces it close to the coast. Another minor factor is the sharp coastal sea surface temperature front associated with upwelling. This can weaken the surface wind in the coastal strip by shallowing the marine boundary layer and decoupling it from the overlying troposphere.
Berg, N, and A Hall. 2015. “Increased interannual precipitation extremes over California under climate change.” Journal of Climate 28 (16): 6324–6334. Publisher's Version Abstract
Changes to mean and extreme wet season precipitation over California on interannual time scales are analyzed using twenty-first-century precipitation data from 34 global climate models. Models disagree on the sign of projected changes in mean precipitation, although in most models the change is very small compared to historical and simulated levels of interannual variability. For the 2020/21–2059/60 period, there is no projected increase in the frequency of extremely dry wet seasons in the ensemble mean. Wet extremes are found to increase to around 2 times the historical frequency, which is statistically significant at the 95% level. Stronger signals emerge in the 2060/61–2099/2100 period. Across all models, extremely dry wet seasons are roughly 1.5 to 2 times more common, and wet extremes generally triple in their historical frequency (statistically significant). Large increases in precipitation variability in most models account for the modest increases to dry extremes. Increases in the frequency of wet extremes can be ascribed to equal contributions from increased variability and increases to the mean. These increases in the frequency of interannual precipitation extremes will create severe water management problems in a region where coping with large interannual variability in precipitation is already a challenge. Evidence from models and observations is examined to understand the causes of the low precipitation associated with the 2013/14 drought in California. These lines of evidence all strongly indicate that the low 2013/14 wet season precipitation total can be very likely attributed to natural variability, in spite of the projected future changes in extremes.
Xie, SP, C Deser, G Vecchi, M Collins, T Delworth, A Hall, E Hawkins, et al. 2015. “Towards predictive understanding of regional climate change: Issues and opportunities for progress.” Nature Climate Change 5: 921–930. Publisher's Version Abstract
Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on projections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared with the forced change, advancing our understanding of the coupling between long-term changes in upper-ocean temperature and the atmospheric circulation will help most to narrow the uncertainty. In the extratropics, relatively large internal variability introduces substantial uncertainty, while exacerbating risks associated with extreme events. Large ensemble simulations are essential to estimate the probabilistic distribution of climate change on regional scales. Regional models inherit atmospheric circulation uncertainty from global models and do not automatically solve the problem of regional climate change. We conclude that the current priority is to understand and reduce uncertainties on scales greater than 100 km to aid assessments at finer scales.
Jin, Y, ML Goulden, N Faivre, S Veraverbeke, F Sun, A Hall, MS Hand, S Hook, and JT Randerson. 2015. “Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change.” Environmental Research Letters 10: 094005. Publisher's Version Abstract
The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial. Southern California's wildfires can be partitioned by meteorology: fires typically occur either during Santa Ana winds (SA fires) in October through April, or warm and dry periods in June through September (non-SA fires). Previous work has not quantitatively distinguished between these fire regimes when assessing economic impacts or climate change influence. Here we separate five decades of fire perimeters into those coinciding with and without SA winds. The two fire types contributed almost equally to burned area, yet SA fires were responsible for 80% of cumulative 1990–2009 economic losses ($3.1 Billion). The damage disparity was driven by fire characteristics: SA fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Non-SA fires were comparatively more sensitive to age-dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted for 70% of total suppression costs. An improved distinction of fire type has implications for future projections and management. The area burned in non-SA fires is projected to increase 77% (±43%) by the mid-21st century with warmer and drier summers, and the SA area burned is projected to increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of suppression investments.
Qu, X, A Hall, SA Klein, and AM DeAngelis. 2015. “Positive tropical marine low-cloud cover feedbac­k inferred from cloud-controlling factors.” Geophysical Research Letters 42 (1): 7767–7775. Publisher's Version Abstract
Differences in simulations of tropical marine low‐cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large‐scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model‐projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient. In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.
DeAngelis, AM, X Qu, MD Zelinka, and A Hall. 2015. “An observational radiative constraint on hydrologic cycle intensification.” Nature 528: 249–253. Publisher's Version Abstract
Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems1,2. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1–3 per cent per kelvin)3,4,5. Part of the uncertainty may originate from atmosphere–radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget6,7. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.
Klein, SA, and A Hall. 2015. “Emergent constraints for cloud feedbacks.” Current Climate Change Reports 1 (4): 276–287. Publisher's Version Abstract
Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.
2014
Capps, SB, A Hall, and M Hughes. 2014. “Sensitivity of Southern California wind energy to turbine characteristics.” Wind Energy 17 (1): 141–159. Publisher's Version Abstract
Using output from a high‐resolution meteorological simulation, we evaluate the sensitivity of southern California wind energy generation to variations in key characteristics of current wind turbines. These characteristics include hub height, rotor diameter and rated power, and depend on turbine make and model. They shape the turbine's power curve and thus have large implications for the energy generation capacity of wind farms. For each characteristic, we find complex and substantial geographical variations in the sensitivity of energy generation. However, the sensitivity associated with each characteristic can be predicted by a single corresponding climate statistic, greatly simplifying understanding of the relationship between climate and turbine optimization for energy production. In the case of the sensitivity to rotor diameter, the change in energy output per unit change in rotor diameter at any location is directly proportional to the weighted average wind speed between the cut‐in speed and the rated speed. The sensitivity to rated power variations is likewise captured by the percent of the wind speed distribution between the turbines rated and cut‐out speeds. Finally, the sensitivity to hub height is proportional to lower atmospheric wind shear. Using a wind turbine component cost model, we also evaluate energy output increase per dollar investment in each turbine characteristic. We find that rotor diameter increases typically provide a much larger wind energy boost per dollar invested, although there are some zones where investment in the other two characteristics is competitive. Our study underscores the need for joint analysis of regional climate, turbine engineering and economic modeling to optimize wind energy production.
Qu, X, and A Hall. 2014. “On the persistent spread in snow-albedo feedback.” Climate Dynamics 42 (1–2): 69–81. Publisher's Version Abstract
Snow-albedo feedback (SAF) is examined in 25 climate change simulations participating in the Coupled Model Intercomparison Project version 5 (CMIP5). SAF behavior is compared to the feedback’s behavior in the previous (CMIP3) generation of global models. SAF strength exhibits a fivefold spread across CMIP5 models, ranging from 0.03 to 0.16 W m−2 K−1 (ensemble-mean = 0.08 W m−2 K−1). This accounts for much of the spread in 21st century warming of Northern Hemisphere land masses, and is very similar to the spread found in CMIP3 models. As with the CMIP3 models, there is a high degree of correspondence between the magnitudes of seasonal cycle and climate change versions of the feedback. Here we also show that their geographical footprint is similar. The ensemble-mean SAF strength is close to an observed estimate of the real climate’s seasonal cycle feedback strength. SAF strength is strongly correlated with the climatological surface albedo when the ground is covered by snow. The inter-model variation in this quantity is surprisingly large, ranging from 0.39 to 0.75. Models with large surface albedo when these regions are snow-covered will also have a large surface albedo contrast between snow-covered and snow-free regions, and therefore a correspondingly large SAF. Widely-varying treatments of vegetation masking of snow-covered surfaces are probably responsible for the spread in surface albedo where snow occurs, and the persistent spread in SAF in global climate models.
Qu, X, A Hall, SA Klein, and PM Caldwell. 2014. “On the spread of changes in marine low cloud cover in climate model simulations of the 21st century.” Climate Dynamics 42 (9–10): 2602–2606. Publisher's Version Abstract
In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model’s premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds’ large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate’s sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC will decrease over the 21st-century. However, to place a strong constraint, for example on the magnitude of the LCC decrease, will require longer observational records and a careful assessment of other environmental factors producing LCC changes. Meanwhile, addressing biases in simulated EIS and SST sensitivities will clearly be an important step towards reducing intermodel spread in simulated LCC changes.
Jin, Y, JT Randerson, N Faivre, SB Capps, A Hall, and ML Goulden. 2014. “Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds.” Journal of Geophysical Research—Biogeosciences 119 (3): 432–450. Publisher's Version Abstract
Wildland fires in Southern California can be divided into two categories: fall fires, which are typically driven by strong offshore Santa Ana winds, and summer fires, which occur with comparatively weak onshore winds and hot and dry weather. Both types of fire contribute significantly to annual burned area and economic loss. An improved understanding of the relationship between Southern California's meteorology and fire is needed to improve predictions of how fire will change in the future and to anticipate management needs. We used output from a regional climate model constrained by reanalysis observations to identify Santa Ana events and partition fires into those occurring during periods with and without Santa Ana conditions during 1959–2009. We then developed separate empirical regression models for Santa Ana and non‐Santa Ana fires to quantify the effects of meteorology on fire number and size. These models explained approximately 58% of the seasonal and interannual variation in the number of Santa Ana fires and 36% of the variation in non‐Santa Ana fires. The number of Santa Ana fires increased during years when relative humidity during Santa Ana events and fall precipitation were below average, indicating that fuel moisture is a key controller of ignition. Relative humidity strongly affected Santa Ana fire size. Cumulative precipitation during the previous three winters was significantly correlated with the number of non‐Santa Ana fires, presumably through increased fine fuel density and connectivity between infrastructure and nearby vegetation. Both relative humidity and the preceding wet season precipitation influenced non‐Santa Ana fire size. Regression models driven by meteorology explained 57% of the temporal variation in Santa Ana burned area and 22% of the variation in non‐Santa Ana burned area. The area burned by non‐Santa Ana fires has increased steadily by 1.7% year−1 since 1959 (p < 0.006); the occurrence of extremely large Santa Ana fires has increased abruptly since 2003. Our results underscore the need to separately consider the fuel and meteorological controls on Santa Ana and non‐Santa Ana fires when projecting climate change impacts on regional fire.
Hall, A. 2014. “Projecting regional change.” Science 346 (6216): 1461–1462. Publisher's Version Abstract
Techniques to downscale global climate model (GCM) output and produce high-resolution climate change projections have emerged over the past two decades. GCM projections of future climate change, with typical resolutions of about 100 km, are now routinely downscaled to resolutions as high as hundreds of meters. Pressure to use these techniques to produce policy-relevant information is enormous. To prevent bad decisions, the climate science community must identify downscaling's strengths and limitations and develop best practices. A starting point for this discussion is to acknowledge that downscaled climate signals arising from warming are more credible than those arising from circulation changes.
2013
Christensen, JH, KK Kanikicharla, E Adlrian, SI An, IFA Cavalcanti, M de Castro, W Dong, et al. 2013. “Climate phenomena and their relevance for future regional climate change.” Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press. Publisher's Version Abstract
This chapter assesses the scientific literature on projected changes in major climate phenomena and more specifically their relevance for future change in regional climates, contingent on global mean temperatures continue to rise.
Berg, N, A Hall, SB Capps, and M Hughes. 2013. “El Niño–Southern Oscillation impacts on winter winds over Southern California.” Climate Dynamics 40 (1–2): 109–121. Publisher's Version Abstract
Changes in wintertime 10 m winds due to the El Niño-Southern Oscillation are examined using a 6 km resolution climate simulation of Southern California covering the period from 1959 through 2001. Wind speed statistics based on regional averages reveal a general signal of increased mean wind speeds and wind speed variability during El Niño across the region. An opposite and nearly as strong signal of decreased wind speed variability during La Niña is also found. These signals are generally more significant than the better-known signals in precipitation. In spite of these regional-scale generalizations, there are significant sub-regional mesoscale structures in the wind speed impacts. In some cases, impacts on mean winds and wind variability at the sub-regional scale are opposite to those of the region as a whole. All of these signals can be interpreted in terms of shifts in occurrences of the region’s main wind regimes due to the El Niño phenomenon. The results of this study can be used to understand how interannual wind speed variations in regions of Southern California are influenced by the El Niño phenomenon.
Toniazzo, T, F Sun, CR Mechoso, and A Hall. 2013. “A regional modeling study of the diurnal cycle in the lower troposphere in the south-eastern tropical Pacific.” Climate Dynamics 41 (7–8): 1899–1922. Publisher's Version Abstract
We examine the influence of the South-American land-mass and its mountains on the significant cyclic diurnal and semidiurnal components of the average circulation in the adjacent area of the southeastern tropical Pacific (SEP). Our approach is based on a number of numerical simulations with the regional atmospheric model weather research and forecasting forced by the National Centers for Environmental Prediction’s final analysis operational analysis data. In the control simulation the model domain covers the SEP and a large part of South America. In several sensitivity experiments the domain is reduced to progressively exclude continental areas. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Chilean and Peruvian land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over the SEP (mainly forced by local insolation) are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain.
Boé, J, A Hall, and X Qu. 2013. “Reply to "Comments on 'Current GCMs' Unrealistic Negative Feedback in the Arctic.'".” Journal of Climate 26 (19): 7789–7792. Publisher's Version Abstract
Pithan and Mauritsen argue that the 2009 results of Boé et al. are not consistent with current understanding of the lapse-rate feedback in the Arctic. They also argue that these results arise to an important extent from self-correlation issues. In this response, the authors argue that their results are not inconsistent with current understanding of lapse-rate feedback and demonstrate that the conclusions remain unchanged when all possibilities of self-correlation are excluded.
Huang, HY, A Hall, and J Teixeira. 2013. “Evaluation of the WRF PBL parameterizations for marine boundary layer clouds: Cumulus and stratocumulus.” Monthly Weather Review 141: 2265–2271. Publisher's Version Abstract
The performance of five boundary layer parameterizations in the Weather Research and Forecasting Model is examined for marine boundary layer cloud regions running in single-column mode. Most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. These comparisons against large-eddy simulation show that a parameterization based on the eddy-diffusivity/mass-flux approach provides a better performance. The results also illustrate the key role of boundary layer parameterizations in model performance.
Neelin, JD, B Langenbrunner, JE Meyerson, A Hall, and N Berg. 2013. “California winter precipitation change under global warming in the Coupled Model Intercomparison Project 5 ensemble.” Journal of Climate 26: 6238–6256. Publisher's Version Abstract
Projections of possible precipitation change in California under global warming have been subject to considerable uncertainty because California lies between the region anticipated to undergo increases in precipitation at mid-to-high latitudes and regions of anticipated decrease in the subtropics. Evaluation of the large-scale model experiments for phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests a greater degree of agreement on the sign of the winter (December–February) precipitation change than in the previous such intercomparison, indicating a greater portion of California falling within the increased precipitation zone. While the resolution of global models should not be relied on for accurate depiction of topographic rainfall distribution within California, the precipitation changes depend substantially on large-scale shifts in the storm tracks arriving at the coast. Significant precipitation increases in the region arriving at the California coast are associated with an eastward extension of the region of strong Pacific jet stream, which appears to be a robust feature of the large-scale simulated changes. This suggests that effects of this jet extension in steering storm tracks toward the California coast constitute an important factor that should be assessed for impacts on incoming storm properties for high-resolution regional model assessments.
2012
Kapnick, S, and A Hall. 2012. “Causes of recent changes in western North American snowpack.” Climate Dynamics 40 (1–2): 109–121. Publisher's Version Abstract
Changes in wintertime 10 m winds due to the El Niño-Southern Oscillation are examined using a 6 km resolution climate simulation of Southern California covering the period from 1959 through 2001. Wind speed statistics based on regional averages reveal a general signal of increased mean wind speeds and wind speed variability during El Niño across the region. An opposite and nearly as strong signal of decreased wind speed variability during La Niña is also found. These signals are generally more significant than the better-known signals in precipitation. In spite of these regional-scale generalizations, there are significant sub-regional mesoscale structures in the wind speed impacts. In some cases, impacts on mean winds and wind variability at the sub-regional scale are opposite to those of the region as a whole. All of these signals can be interpreted in terms of shifts in occurrences of the region’s main wind regimes due to the El Niño phenomenon. The results of this study can be used to understand how interannual wind speed variations in regions of Southern California are influenced by the El Niño phenomenon.
2011
Pavelsky, T, J Boé, A Hall, and E Fetzer. 2011. “Atmospheric inversion strength over polar oceans in winter regulated by sea ice.” Climate Dynamics 36: 945–955. Publisher's Version Abstract
Low-level temperature inversions are a common feature of the wintertime troposphere in the Arctic and Antarctic. Inversion strength plays an important role in regulating atmospheric processes including air pollution, ozone destruction, cloud formation, and negative longwave feedback mechanisms that shape polar climate response to anthropogenic forcing. The Atmospheric Infrared Sounder (AIRS) instrument provides reliable measures of spatial patterns in mean wintertime inversion strength when compared with available radiosonde observations and reanalysis products. Here, we examine the influence of sea ice concentration on inversion strength in the Arctic and Antarctic. Correlation of inversion strength with mean annual sea ice concentration, likely a surrogate for the effective thermal conductivity of the wintertime ice pack, yields strong, linear relationships in the Arctic (r = 0.88) and Antarctic (r = 0.86). We find a substantially greater (stronger) linear relationship between sea ice concentration and surface air temperature than with temperature at 850 hPa, lending credence to the idea that sea ice controls inversion strength through modulation of surface heat fluxes. As such, declines in sea ice in either hemisphere may imply weaker mean inversions in the future. Comparison of mean inversion strength in AIRS and global climate models (GCMs) suggests that many GCMs poorly characterize mean inversion strength at high latitudes.

Pages