Publications by Author: A Hall

Clement, A, A Hall, and A Broccoli. 2004. “The importance of precessional signals in the tropical climate.” Climate Dynamics 22: 327–341. Publisher's Version Abstract
Past research on the climate response to orbital forcing has emphasized the glacial-interglacial variations in global ice volume, global-mean temperature, and the global hydrologic cycle. This emphasis may be inappropriate in the tropics, where the response to precessional forcing is likely to be somewhat independent of the glacial-interglacial variations, particularly in variables relating to the hydrologic cycle. To illustrate this point, we use an atmospheric general circulation model coupled to a slab ocean model, performing experiments that quantify the tropical climate’s response to (1) opposite phases of precessional forcing, and (2) Last Glacial Maximum boundary conditions. While the glacially-forced tropical temperature changes are typically more than an order of magnitude larger than those arising from precessional forcing, the hydrologic signals stemming from the two forcings are comparable in magnitude. The mechanisms behind these signals are investigated and shown to be quite distinct for the precessional and glacial forcing. Because of strong dynamical linkages in the tropics, the model results illustrate the impossibility of predicting the local hydrologic response to external forcing without understanding the response at much larger spatial scales. Examples from the paleoclimate record are presented as additional evidence for the importance of precessional signals in past variations of the tropical climate.
Zonally symmetric fluctuations of the midlatitude westerly winds characterize the primary mode of atmospheric variability in the Southern Hemisphere during all seasons. This is true not only in observations but also in an unforced 15 000-yr integration of a coarse-resolution (R15) coupled ocean–atmosphere model. Here it is documented how this mode of atmospheric variability, known as the Southern Annular Mode (SAM), generates ocean circulation and sea ice variations in the model integration on interannual to centennial timescales that are tightly in phase with the SAM. The positive phase of the SAM is associated with an intensification of the surface westerlies over the circumpolar ocean (around 60°S), and a weakening of the surface westerlies farther north. This induces Ekman drift to the north at all longitudes of the circumpolar ocean, and Ekman drift to the south at around 30°S. Through mass continuity, the Ekman drift generates anomalous upwelling along the margins of the Antarctic continent, and downwelling around 45°S. The anomalous flow diverging from the Antarctic continent also increases the vertical tilt of the isopycnals in the Southern Ocean, so that a more intense circumpolar current is also closely associated with positive SAM. In addition, the anomalous divergent flow advects sea ice farther north, resulting in an increase in sea ice coverage. Finally, positive SAM drives increases in poleward heat transport at about 30°S, while decreases occur in the circumpolar region. Ocean and sea ice anomalies of the opposite sign occur when the SAM is negative. The ocean and sea ice fluctuations associated with the SAM constitute a significant fraction of simulated ocean variability poleward of 30°S year-round. The robustness of the mechanisms relating the SAM to oceanic variability suggests that the SAM is likely an important source of large-scale variability in the real Southern Hemisphere ocean.
Hall, A. 2003. “Mathematical models of human-induced climate change.” Mathematical Models. Oxford: Encyclopedia of Life Support Systems (EOLSS).
Hall, A, and S Manabe. 2001. “The effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle.” Journal of Geophysical Research: Atmospheres 105 (D5): 6935–6944. Publisher's Version Abstract
Using two versions of the GFDL coupled ocean‐atmosphere model, one where water vapor anomalies are allowed to affect the longwave radiation calculation and one where they are not, we examine the role of water vapor feedback in internal precipitation variability and greenhouse‐gas‐forced intensification of the hydrologic cycle. Without external forcing, the experiment with water vapor feedback produces 44% more annual‐mean, global‐mean precipitation variability than the one without. We diagnose the reason for this difference: In both experiments, global‐mean surface temperature anomalies are associated with water vapor anomalies. However, when water vapor interacts with longwave radiation, the temperature anomalies are associated with larger anomalies in surface downward longwave radiation. This increases the temperature anomaly damping through latent heat flux, creating an evaporation anomaly. The evaporation anomaly, in turn, leads to an anomaly of nearly the same magnitude in precipitation. In the experiment without water vapor feedback, this mechanism is absent. While the interaction between longwave and water vapor has a large impact on the global hydrologic cycle internal variations, its effect decreases as spatial scales decrease, so water vapor feedback has only a very small impact on grid‐scale hydrologic variability. Water vapor feedback also affects the hydrologic cycle intensification when greenhouse gas concentrations increase. By the 5th century of global warming experiments where CO2 is increased and then fixed at its doubled value, the global‐mean precipitation increase is nearly an order of magnitude larger when water vapor feedback is present. The cause of this difference is similar to the cause of the difference in internal precipitation variability: When water vapor feedback is present, the increase in water vapor associated with a warmer climate enhances downward longwave radiation. To maintain surface heat balance, evaporation increases, leading to a similar increase in precipitation. This effect is absent in the experiment without water vapor feedback. The large impact of water vapor feedback on hydrologic cycle intensification does not weaken as spatial scales decrease, unlike the internal variability case. Accurate representations of water vapor feedback are therefore necessary to simulate global‐scale hydrologic variability and intensification of the hydrologic cycle in global warming.
Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere–ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6–10 standard deviations below its mean value for a period of 30–40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region.
Hall, A, and S Manabe. 2000. “ENSO suppression in a coupled model without water vapor feedback.” Climate Dynamics 16: 393–403. Publisher's Version Abstract
We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.
Sea surface temperature (SST) and salinity (SSS) time series from four ocean weather stations and data from an integration of the GFDL coupled ocean-atmosphere model are analyzed to test the applicability of local linear stochastic theory to the mixed-layer ocean. According to this theory, mixed-layer variability away from coasts and fronts can be explained as a ‘red noise’ response to the ‘white noise’ forcing by atmospheric disturbances. At one weather station, Papa (northeast Pacific), this stochastic theory can be applied to both salinity and temperature, explaining the relative redness of the SSS spectrum. Similar results hold for a model grid point adjacent to Papa, where the relationships between atmospheric energy and water fluxes and actual changes in SST and SSS are what is expected from local linear stochastic theory. At the other weather stations, this theory cannot adequately explain mixed-layer variability. Two oceanic processes must be taken into account: at Panulirus (near Bermuda), mososcale eddies enhance the observed variability at high frequencies. At Mike and India (North Atlantic), variations in SST and SSS advection, indicated by the coherence and equal persistence of SST and SSS anomalies, contribute to much of the low frequency variability in the model and observations. To achieve a global perspective, TOPEX altimeter data and model results are used to identify regions of the ocean where these mechanisms of variability are important. Where mesoscale eddies are as energetic as at Panulirus, indicated by the TOPEX global distribution of sea level variability, one would expect enhanced variability on short time scales. In regions exhibiting signatures of variability similar to Mike and India, variations in SST and SSS advection should dominate at low frequencies. According to the model, this mode of variability is found in the circumpolar ocean and the northern North Atlantic, where it is associated with the irregular oscillations of the model’s thermohaline circulation.

To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean–atmosphere model is integrated for 1000 yr in two configurations, one with water vapor feedback and one without. For all spatial scales, the model with water vapor feedback has more low-frequency (timescale ≥ 2 yr) surface temperature variability than the one without. Thus water vapor feedback is positive in the context of the model’s unperturbed variability. In addition, water vapor feedback is more effective the longer the timescale of the surface temperature anomaly and the larger its spatial scale.

To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO2 was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38°C, while in the one without it is only 1.05°C. However, the model’s water vapor feedback has a larger impact on surface warming in response to a doubling of CO2than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback’s strength therefore depends on the type of temperature anomaly it affects. The authors found that the degree to which a surface temperature anomaly penetrates into the troposphere is a critical factor in determining the effectiveness of its associated water vapor feedback. The more the anomaly penetrates, the stronger the feedback. It is also shown that the apparent impact of water vapor feedback is altered by other feedback mechanisms, such as albedo and cloud feedback. The sensitivity of the results to this fact is examined.

Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.