Climate feedbacks

Climate feedbacks are processes within the climate system that have the potential to either mitigate or exacerbate climate change. The major climate feedbacks are the following:

Water vapor feedback, in which warming causes the atmosphere to hold more water vapor, which traps even more heat.

Snow and sea ice albedo feedbacks, in which the melting of snow or sea ice uncovers surfaces that absorb more solar radiation than snow or ice would have, leading to enhanced local warming.

Cloud feedback, in which changes in cloud cover affect the amount of incoming solar radiation that penetrates to the land surface, and the amount of outgoing terrestrial radiation that is reflected back out to space. One of the critical questions in climate science is whether changes in cloud cover create a positive (exacerbating warming) or a negative (mitigating warming) feedback.

Our group works to reduce the uncertainty in global climate model projections of snow albedo, sea ice albedo, and cloud feedbacks (see Emergent Constraints for more information).

Related Publications

Krinner, G, C Derksen, R Essery, M Flanner, S Hagemann, M Clark, A Hall, et al. 2018. “ESM-SnowMIP: Assessing models and quantifying snow-related climate feedbacks.” Geoscientific Model Development 11: 5027–5049. Publisher's Version Abstract
This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).
Bowman, KW, N Cressie, X Qu, and A Hall. 2018. “A hierarchical statistical framework for emergent constraints: application to snow‐albedo feedback.” Geophysical Research Letters 45 (23): 13,050–13,059. Publisher's Version Abstract
Emergent constraints use relationships between future and current climate states to constrain projections of climate response. Here we introduce a statistical, hierarchical emergent constraint (HEC) framework in order to link future and current climates with observations. Under Gaussian assumptions, the mean and variance of the future state are shown analytically to be a function of the signal‐to‐noise ratio between current climate uncertainty and observation error and the correlation between future and current climate states. We apply the HEC to the climate change, snow‐albedo feedback, which is related to the seasonal cycle in the Northern Hemisphere. We obtain a snow‐albedo feedback prediction interval of (−1.25,−0.58)%/K. The critical dependence on signal‐to‐noise ratio and correlation shows that neglecting these terms can lead to bias and underestimated uncertainty in constrained projections. The flexibility of using HEC under general assumptions throughout the Earth system is discussed.
Thackeray, CW, X Qu, and A Hall. 2018. “Why do models produce spread in snow albedo feedback?” Geophysical Research Letters 45 (12): 6223–6231. Publisher's Version Abstract
Snow albedo feedback (SAF) behaves similarly in the current and future climate contexts; thus, constraining the large intermodel variance in SAF will likely reduce uncertainty in climate projections. To better understand this intermodel spread, structural and parametric biases contributing to SAF variability are investigated. We find that structurally varying snowpack, vegetation, and albedo parameterizations drive most of the spread, while differences arising from model parameters are generally smaller. Models with the largest SAF biases exhibit clear structural or parametric errors. Additionally, despite widespread intermodel similarities, model interdependency has little impact on the strength of the relationship between SAF in the current and future climate contexts. Furthermore, many models now feature a more realistic SAF than in the prior generation, but shortcomings from two models limit the reduction in ensemble spread. Lastly, preliminary signs from ongoing model development are positive and suggest a likely reduction in SAF spread among upcoming models.
Qu, X, A Hall, AM DeAngelis, MD Zelinka, SA Klein, H Su, B Tian, and C Zhai. 2018. “On the emergent constraints of climate sensitivity.” Journal of Climate 31 (2): 863–875. Publisher's Version Abstract
Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable to a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. In addition, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.
Klein, SA, A Hall, JR Norris, and R Pincus. 2017. “Low-cloud feedbacks from cloud-controlling factors: a review.” Surveys in Geophysics 38 (6): 1307–1329. Publisher's Version Abstract
The response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming, one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m−2 K−1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.
Qu, X, A Hall, SA Klein, and AM DeAngelis. 2015. “Positive tropical marine low-cloud cover feedbac­k inferred from cloud-controlling factors.” Geophysical Research Letters 42 (1): 7767–7775. Publisher's Version Abstract
Differences in simulations of tropical marine low‐cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large‐scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model‐projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient. In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.
Qu, X, and A Hall. 2014. “On the persistent spread in snow-albedo feedback.” Climate Dynamics 42 (1–2): 69–81. Publisher's Version Abstract
Snow-albedo feedback (SAF) is examined in 25 climate change simulations participating in the Coupled Model Intercomparison Project version 5 (CMIP5). SAF behavior is compared to the feedback’s behavior in the previous (CMIP3) generation of global models. SAF strength exhibits a fivefold spread across CMIP5 models, ranging from 0.03 to 0.16 W m−2 K−1 (ensemble-mean = 0.08 W m−2 K−1). This accounts for much of the spread in 21st century warming of Northern Hemisphere land masses, and is very similar to the spread found in CMIP3 models. As with the CMIP3 models, there is a high degree of correspondence between the magnitudes of seasonal cycle and climate change versions of the feedback. Here we also show that their geographical footprint is similar. The ensemble-mean SAF strength is close to an observed estimate of the real climate’s seasonal cycle feedback strength. SAF strength is strongly correlated with the climatological surface albedo when the ground is covered by snow. The inter-model variation in this quantity is surprisingly large, ranging from 0.39 to 0.75. Models with large surface albedo when these regions are snow-covered will also have a large surface albedo contrast between snow-covered and snow-free regions, and therefore a correspondingly large SAF. Widely-varying treatments of vegetation masking of snow-covered surfaces are probably responsible for the spread in surface albedo where snow occurs, and the persistent spread in SAF in global climate models.
Boé, J, A Hall, and X Qu. 2013. “Reply to "Comments on 'Current GCMs' Unrealistic Negative Feedback in the Arctic.'".” Journal of Climate 26 (19): 7789–7792. Publisher's Version Abstract
Pithan and Mauritsen argue that the 2009 results of Boé et al. are not consistent with current understanding of the lapse-rate feedback in the Arctic. They also argue that these results arise to an important extent from self-correlation issues. In this response, the authors argue that their results are not inconsistent with current understanding of lapse-rate feedback and demonstrate that the conclusions remain unchanged when all possibilities of self-correlation are excluded.
We show that intermodel variations in the anthropogenically-forced evolution of September sea ice extent (SSIE) in the Arctic stem mainly from two factors: the baseline climatological sea ice thickness (SIT) distribution, and the local climate feedback parameter. The roles of these two factors evolve over the course of the twenty-first century. The SIT distribution is the most important factor in current trends and those of coming decades, accounting for roughly half the intermodel variations in SSIE trends. Then, its role progressively decreases, so that around the middle of the twenty-first century the local climate feedback parameter becomes the dominant factor. Through this analysis, we identify the investments in improved simulation of Arctic climate necessary to reduce uncertainties both in projections of sea ice loss over the coming decades and in the ultimate fate of the ice pack.
A study of the California Sierra Nevada snowpack has been conducted using snow station observations and reanalysis surface temperature data. Monthly snow water equivalent (SWE) measurements were combined from two datasets to provide sufficient data from 1930 to 2008. The monthly snapshots are used to calculate peak snow mass timing for each snow season. Since 1930, there has been an overall trend toward earlier snow mass peak timing by 0.6 days per decade. The trend toward earlier timing also occurs at nearly all individual stations. Even stations showing an increase in 1 April SWE exhibit the trend toward earlier timing, indicating that enhanced melting is occurring at nearly all stations. Analysis of individual years and stations reveals that warm daily maximum temperatures averaged over March and April are associated with earlier snow mass peak timing for all spatial and temporal scales included in the dataset. The influence is particularly pronounced for low accumulation years indicating the potential importance of albedo feedback for the melting of shallow snow. The robustness of the early spring temperature influence on peak timing suggests the trend toward earlier peak timing is attributable to the simultaneous warming trend (0.1°C decade−1 since 1930, with an acceleration in warming in later time periods). Given future scenarios of warming in California, one can expect acceleration in the trend toward earlier peak timing; this will reduce the warm season storage capacity of the California snowpack.
Fernandes, R, H Zhao, X Wang, J Key, X Qu, and A Hall. 2009. “Controls on northern hemisphere snow albedo feedback quantified using satelllite Earth observations.” Geophysical Research Letters 36: L21702. Publisher's Version Abstract
Observation based estimates of controls on snow albedo feedback (SAF) are needed to constrain the snow and albedo parameterizations in general circulation model (GCM) projections of air temperature over the Northern Hemisphere (NH) landmass. The total April‐May NH SAF, corresponding to the sum of the effect of temperature on surface albedo over snow covered surfaces (‘metamorphism’) and over surfaces transitioning from snow covered to snow free conditions (‘snow cover’), is derived with daily NH snow cover and surface albedo products using Advanced Very High Resolution Radiometer Polar Pathfinder satellite data and surface air temperature from ERA40 reanalysis data between 1982–1999. Without using snow cover information, the estimated total SAF, for land surfaces north of 30°N, of −0.93 ± 0.06%K−1 was not significantly different (95% confidence) from estimates based on International Satellite Cloud Climatology Project surface albedo data. The SAF, constrained to only snow covered areas, grew to −1.06 ± 0.08%K−1 with similar magnitudes for the ‘snow cover’ and ‘metamorphosis’ components. The SAF pattern was significantly correlated with the ‘snow cover’ component pattern over both North America and Eurasia but only over Eurasia for the ‘metamorphosis’ component. However, in contrast to GCM model based diagnoses of SAF, the control on the ‘snow cover’ component related to the albedo contrast of snow covered and snow free surfaces was not strongly correlated to the total SAF.
Fletcher, C, P Kushner, A Hall, and X Qu. 2009. “Circulation responses to snow albedo feedback in climate change.” Geophysical Research Letters 36: L09702. Publisher's Version Abstract
Climate change is expected to cause a reduction in the spatial extent of snow cover on land. Recent work suggests that this will exert a local influence on the atmosphere and the hydrology of snow‐margin areas through the snow‐albedo feedback (SAF) mechanism. A significant fraction of variability among IPCC AR4 general circulation model (GCM) predictions for future summertime climate change over these areas is related to the models' representation of springtime SAF. In this study, we demonstrate a nonlocal influence of SAF on the summertime circulation in the extratropical Northern Hemisphere. Increased land surface warming in models with stronger SAF is associated with large‐scale sea‐level pressure anomalies over the northern oceans and a poleward intensified subtropical jet. We find that up to 25–30% and, on average, 5–10% of the inter‐model spread in projections of the circulation response to climate change is linearly related to SAF strength.
Boé, J, A Hall, and X Qu. 2009. “Current GCMs' unrealistic negative feedback in the Arctic.” . Journal of Climate 22: 4682–4695. Publisher's Version Abstract
The large spread of the response to anthropogenic forcing simulated by state-of-the-art climate models in the Arctic is investigated. A feedback analysis framework specific to the Arctic is developed to address this issue. The feedback analysis shows that a large part of the spread of Arctic climate change is explained by the longwave feedback parameter. The large spread of the negative longwave feedback parameter is in turn mainly due to variations in temperature feedback. The vertical temperature structure of the atmosphere in the Arctic, characterized by a surface inversion during wintertime, exerts a strong control on the temperature feedback and consequently on simulated Arctic climate change. Most current climate models likely overestimate the climatological strength of the inversion, leading to excessive negative longwave feedback. The authors conclude that the models’ near-equilibrium response to anthropogenic forcing is generally too small.
Qu, X, and A Hall. 2007. “What controls the strength of snow albedo feedback?” Journal of Climate 20: 3971–39. Publisher's Version Abstract
The strength of snow-albedo feedback (SAF) in transient climate change simulations of the Fourth Assessment of the Intergovernmental Panel on Climate Change is generally determined by the surface-albedo decrease associated with a loss of snow cover rather than the reduction in snow albedo due to snow metamorphosis in a warming climate. The large intermodel spread in SAF strength is likewise attributable mostly to the snow cover component. The spread in the strength of this component is in turn mostly attributable to a correspondingly large spread in mean effective snow albedo. Models with large effective snow albedos have a large surface-albedo contrast between snow-covered and snow-free regions and exhibit a correspondingly large surface-albedo decrease when snow cover decreases. Models without explicit treatment of the vegetation canopy in their surface-albedo calculations typically have high effective snow albedos and strong SAF, often stronger than observed. In models with explicit canopy treatment, completely snow-covered surfaces typically have lower albedos and the simulations have weaker SAF, generally weaker than observed. The authors speculate that in these models either snow albedos or canopy albedos when snow is present are too low, or vegetation shields snow-covered surfaces excessively. Detailed observations of surface albedo in a representative sampling of snow-covered surfaces would therefore be extremely useful in constraining these parameterizations and reducing SAF spread in the next generation of models.
Qu, X, and A Hall. 2006. “Assessing snow albedo feedback in simulated climate change.” Journal of Climate 19: 2617–2630. Publisher's Version Abstract
In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.
Bony, S, R Colman, V Kattsov, RP Allan, CS Bretherton, J-L Dufresne, A Hall, et al. 2006. “How well do we understand climate change feedback processes?” Journal of Climate 19: 3445–3482. Publisher's Version Abstract
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.
Differences in simulations of climate feedbacks are sources of significant divergence in climate models' temperature response to anthropogenic forcing. Snow albedo feedback is particularly critical for climate change prediction in heavily‐populated northern hemisphere land masses. Here we show its strength in current models exhibits a factor‐of‐three spread. These large intermodel variations in feedback strength in climate change are nearly perfectly correlated with comparably large intermodel variations in feedback strength in the context of the seasonal cycle. Moreover, the feedback strength in the real seasonal cycle can be measured and compared to simulated values. These mostly fall outside the range of the observed estimate, suggesting many models have an unrealistic snow albedo feedback in the seasonal cycle context. Because of the tight correlation between simulated feedback strength in the seasonal cycle and climate change, eliminating the model errors in the seasonal cycle will lead directly to a reduction in the spread of feedback strength in climate change. Though this comparison to observations may put the models in an unduly harsh light because of uncertainties in the observed estimate that are difficult to quantify, our results map out a clear strategy for targeted observation of the seasonal cycle to reduce divergence in simulations of climate sensitivity.
Heinze, C, V Eyring, P Friedlingstein, C Jones, Y Balkanski, W Collins, T Fichefet, et al. 2019. “Climate feedbacks in the Earth system and prospects for their evaluation.” Earth System Dynamics 10: 379–452. Publisher's Version Abstract
Earth system models (ESMs) are key tools for providing climate projections under different scenarios of human-induced forcing. ESMs include a large number of additional processes and feedbacks such as biogeochemical cycles that traditional physical climate models do not consider. Yet, some processes such as cloud dynamics and ecosystem functional response still have fairly high uncertainties. In this article, we present an overview of climate feedbacks for Earth system components currently included in state-of-the-art ESMs and discuss the challenges to evaluate and quantify them. Uncertainties in feedback quantification arise from the interdependencies of biogeochemical matter fluxes and physical properties, the spatial and temporal heterogeneity of processes, and the lack of long-term continuous observational data to constrain them. We present an outlook for promising approaches that can help to quantify and to constrain the large number of feedbacks in ESMs in the future. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research (researchers, lecturers, and students). This study updates and significantly expands upon the last comprehensive overview of climate feedbacks in ESMs, which was produced 15 years ago (NRC, 2003).
Thackeray, CW, C Derksen, CG Fletcher, and A Hall. 2019. “Snow and climate: Feedbacks, drivers, and indices of change.” Current Climate Change Reports 5 (4): 322–333. Publisher's Version Abstract

Purpose of Review

Highlight significant developments that have recently been made to enhance our understanding of how snow responds to climate forcing and the role that snow plays in the climate system.

Recent Findings

Widespread snow loss has occurred in recent decades, with the largest decreases in spring. These changes are primarily driven by temperature and precipitation, but changes in vegetation, light-absorbing impurities, and sea ice also contribute to variability. Changes in snow cover can also affect climate through the snow albedo feedback (SAF). Recently, considerable progress has been made in better understanding the processes contributing to SAF. We also highlight advances in knowledge of how snow variability is linked to large-scale atmospheric changes. Lastly, large-scale snow losses are expected to continue under climate change in all but the coldest climates. These projected changes to snow raise considerable concerns over future freshwater availability in snow-dominated watersheds.

Summary

The results discussed here demonstrate the widespread implications that changes to snow have on the climate system and anthropogenic activity at large.

Thackeray, CW, and A Hall. 2019. “An emergent constraint on future Arctic sea-ice albedo feedback.” Nature Climate Change 9: 972–978. Publisher's Version Abstract
Arctic sea ice has decreased substantially over recent decades, a trend projected to continue. Shrinking ice reduces surface albedo, leading to greater surface solar absorption, thus amplifying warming and driving further melt. This sea-ice albedo feedback (SIAF) is a key driver of Arctic climate change and an important uncertainty source in climate model projections. Using an ensemble of models, we demonstrate an emergent relationship between future SIAF and an observable version of SIAF in the current climate’s seasonal cycle. This relationship is robust in constraining SIAF over the coming decades (Pearson’s r = 0.76), and then it degrades. The degradation occurs because some models begin producing ice-free conditions, signalling a transition to a new ice regime. The relationship is strengthened when models with unrealistically thin historical ice are excluded. Because of this tight relationship, reducing model errors in the current climate’s seasonal SIAF and ice thickness can narrow SIAF spread under climate change.